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Abstract

In this paper a system is described for the aitomatic generation of a spedfic semantic 3D model of a human face
from a recorded stereoscopic image sequence. In the agjuisition stage a céibrated stereoscopic canera records
the spedfic face After redification of the image sequences a dense disparity field is estimated using a Markov
Random Field approach. Next a triangle based 3D-wire frame model of the spedfic faceis recnstructed by
triangulation of corresponding left and right pixels. After compensation for rotation and translation, a triangle
based 3D-wire frame model of a generic faceis elastically matched to the spedfic face As a mnsequence of
this approach the resulting 3D model acarately represents the geometry of the subjed with the avail ability of
the face semantic information which is required for redistic representation and animation of human faces as
well asfor acarate fadal expressions estimation.

Keywords: 3D-facemodeling, stereoscopy, elastic matching, disparity estimation

1. Introduction

Within video coding, man-machine interfaces and 3D telepresence systems like virtual conferencing
rooms, the modeling of human faces becomes increasingly important. Either because of its efficient
representation (MPEG4 198, SNHC 1997, Aizawa 1995), its life-likeness (Parke 199, Thorisson
1997, or the required availability of 3D models (Hopf, 1994). In this highly adive research field,
most attention is paid towards either the tradking of fadal expressions (Essa 1997,Y acoob 1996) or
the recognition o faces (Turk 1991, Chellappa 19%). For redistic representations as well as for re-
quired expresson estimation accuragy, it is essential to be éle to automatically conform a known 3D
generic face model (including a complete underlying muscle model) to the 3D structure of a specific
person. The latter is, however, ill an open problem. Often ore fals badk to manual approaches
(Parke 199, Waters 1991). Otherwise, ore uses an automatic construction o 3D models from ac
quired stereo or range images (Braggins 1998, but leave out the mapping to the generic face model.
Thisis, however, essential becaise the generic model provides information abou the semantics (posi-
tion d eyes and mouths etc.) and the underlying muscle structures (Waters, 191). A few approaches
exigt that estimate the 3D position of a small set of landmark points (Bookstein, 199), such as the
corners of the eyes, and transform the generic model accordingly. A drawbad of these methods is
that they interpolate the 3D geometry of the spedfic person between the landmark poaints (Aizawa
1995,Nagashima 1991).

In this paper we present a new automatic conformation method that first accurately estimates the 3D
geometry of a person and then conforms a generic 3D face model on the basis of the complete meas-
ured 3D data.



In sedion 2an overview of the propaosed system is given. Section 3 describes the acquisition o 3D
data of a specific person and sedion 4 describes the conformation of the generic face model to the 3D
data. Section 5 presents experimental results and in section 6 some @nclusions are drawn.

2. System Overview

Figure 1 shows an overview of the proposed system. The system can roughly be divided into two sub-
systems, ore that accurately estimates the 3D geometry of a recorded person and one in which a ge-
neric facemodel is conformed to this measured data.

To aqquire 3D data we use the stereo imaging paradigm. A cdibrated stereoscopic camerarecords the
person. Here we have used a baseline between the cameras larger than the g/e-distanceto ensure high
depth accuracy and a subpixel acarate calibration scheme. A 3D reconstruction of the scene is ob-
tained by estimating the disparity between the left and right images.
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Figure 1: Overview of the proposed system for automatic generation of a specific and
semantic 3D model of a human face

To capture the 3D data of the person's facefirst a 2D-face &traction scheme is applied. Here we &-
ploit the fact that the face has a uniform color, has an ellipticd shape (Parke, 199%) and that the face
can be segmented in the disparity domain due to the restricted disparity range of the face Next the
disparity data of the extracted faceis transformed into a collection of 3D points from which we wn-
struct atriangle based wire frame model.

In the second part a generic model is matched to this gecific model. First, we perform a global
matching based on the inertia properties of the models to correct for scding, orientation and transla-
tion dfferences (Chaudhui, 191). Next, the generic model is deformed locally in an elastic way to
match the specific model. The resulting model is a spedfic 3D model of the recorded human face in
which semantic information is till available.

In the next sections, the different steps are described in more detail .



3. Spedfic FaceM odel Generation

This section describes the generation d the 3D mode of the recorded faceincluding data aaquisition,
camera calibration, dsparity estimation, face extraction and surfacereconstruction.

Data acquisition and camera calibration: By using the stereo paradigm, 3D data of the faceof a
subject is aqquired. Two images are recorded with spatialy separated cameras. By estimating the dis-
parity, a 3D reconstruction of scene can be made. For an exact recnstruction d this scene the canera
parameters such as orientation, pasition, and lens properties (focd length, lens distortion) must be
known. These alibration parameters are also used to rectify the images in such away that no vertica
disparity occursin order to ease the disparity estimation.

The cameras used are Panasonic E550 cameras with FujinonTV Z lenses. The baseline of the caneras
was about 20 cm. The calibration was dore using a rectangular dark plate with 48 reflective circular
markers. The aordinates of these markers are known with an accuracy of 0.02mm. The camera cali-
bration algorithm is described in Sabel (1992) and Woltring (1978). The redification method was de-
veloped by Bakker (1997).

The procedure for camera cibration and image redification is illustrated in Figure 2. Each time a
specific face is recorded, the calibration plane is moved in front of the cameras and recorded in sev-
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Figure 2: Diagram of calibration and rectification routine.

era different positions and orientations. The markers of the clibration plane are deteded in the im-
ages, andtheir coordinates form the input for the clibration routine. The @i bration routine calculates
the camera pasitions, orientations, and lens properties iteratively using aleast-means-square aiterion.
Using this information, two virtual cameras are onstructed that are parallel and have no lens distor-
tions, but with positions and lens properties as smilar as possible to the real cameras.

To rectify the images, virtual 3D mesh pdnts are considered. Using the canera calibration informa-
tion, 2D reconstruction of these mesh pdnts for each of the real and virtual cameras are determined.
These resulting 2D meshes then form the input for a warping a gorithm. This warping algorithm com-
pares the 2D mesh of the real cameras with the 2D mesh of the virtual cameras and determines the
new pasition of pixels of an input image in the rectified ouput image.

Disparity estimation: Disparity estimation algorithms are based on luminance similarity of corre-
sponding pixel pairs. These pixel pairs, however, will not aways have eactly the same luminance



value due to the noise, camera gain differences and speaular reflectivity of the scene. Hence many
factorsinfluence the quality of the output field. Generall y the resolution and accuracy islimited dueto
the algorithm (block, pixel of sub-pixel), the modeling of occlusion (Redert 1998, Stiller 1997), object
orientation (Redert, 1998), object segmentation (Stiller, 1997) or the @rrectnessof the luminance dif-
ference modeling.

To aobtain a 3D specific face modd with the best resolution and accuracy possible the disparity field
shoud be dense (pixel resolution) and have (sub-) pixel acaracy. The modeling of occlusion and -
ject segmentation is not taken into account since within the object of interest, the specific face we do
not want anything to be ocduded. The non-ocdusion requirement leals to the use of a small camera
baseline. This has a positive side dfect of minimizing luminance differences due to specular reflec
tivity on the subjed’s face which are difficult to model. However, this also implies that the range of
disparity in the face isrelatively low and sub-pixel disparity acaracy will be necessary to increase 3D
acaragy.

Popuar approaches are block matching (Kanade, 194) and pixel matching with dynamic program-
ming (DP) (Redert, 1998) or Markov Randam Fields (MRF) (Stiller, 1997). Block matching is robust,
but the relatively large size of the block does not allow for a pixel resolution dsparity field. The DP
algorithms all ow for deterministic agorithms that yield the global optimum solution with easy incor-
poration of occlusior/segmentation. However, these algorithms are based on matching a single pair of
scanlines in the images and thus they lack vertical consistency among scanlines. In MRF-based algo-
rithms the vertical consistency can be introduced lealing to consistent high accuracy results (Stiller,
1997.

Here we adopt the MRF approach. The disparity values D(X,y) are defined as depicted in Figure 3.
In stead of calculating the disparity values between left and right cameraimages, a virtual image &-
adly between bah cameraimagesisintroduced, dencted as the canter image.

Right
image

Left
image

Disparity

Figure 3: Center image @mntaining disparity information.

Two energy terms are defined which sum has to be minimized. The first term is the external energy
Eex Which minimization reflects the expected similarity in luminance difference |I_-lg| for corred
pixel pairs.

Eea= 2 /1L(x+D(xY),y) = Iz (x=D(x,y),Y) (1)
P Conieimage
* * 2
E.= > KD(xy)-D(X.y) (2)
all neighborirg
pixel pairs
(y), (x5, y*)

The secondterm isthe internal energy E;, which minimization smoacthes the disparity field.

The disparity differenceterms in (2) result from modeling disparity as a Gaussian Markov Random
Field with 4-conreded cliques. For more details about Markov Random Fields we refer to Geman
(1984). The oongtant K influences the tradeoff between external energy and internal energy and is to
be determined by experiment.

The disparity values D are real numbers to alow for sub-pixel accuracy. Theimage wordinatesin (1)
are thus continuous. Image luminance values at nongrid pasitions are interpolated bi-linearly from
the four neighboring grid positions.



For the minimization of E = Ejy+Ee: We use simulated annealing to avoid local minima. In simulated
anneding (Geman, 1981), randam perturbations are applied to al disparity vedors. If the energy E
deaeases, the perturbation is kept. If E increases, the perturbation is kept with a probability €,
governed by atemperature T. The temperature is deaeased dowly to lead to convergence of the algo-
rithm. To spead up convergence ahierachica approach is adopted. In the hierarchical approach a
pyramid of images is constructed from baoth left and right images. The dgorithm starts at the lowest
detail 1evel (images are 2*2 pixels) with the disparity field initialized to zero. At this level, Nga itera-
tions are performed in which each disparity value is visited orce. At each visit, a perturbation is &
lected from a uniform distribution between -2 and 2,the temperature is equal to Tgar. At each transi-
tion to a higher detail level, the disparity field from the lower level is interpolated linearly to the
higher level and used as darting point. The temperature is divided by 2, the number of iterations is
divided by 4. The start temperature and number of iterations are to be determined experimentally.
From the estimated disparity, an interpolated center image is constructed, based onthe left and right
images (Redert, 1997) which then is used for face extradion.

Face extraction: Sincewe ae only interested in the pixels correspondng to the face we have deve -
oped a 2D-face etraction scheme. Here we exploit the fad that the face has a uniform color and has
an elliptical shape. This results in an dliptical shaped mask, which we used to segment the disparity
image. In the disparity estimation stage erors were introduced because of the smoaothing of the data.
In fad the faceis glued to the badground,which cause wrong disparity data especially nea the con
tour of the face. To correct for these arors we threshold the segmented dsparity data to obtain that
part of the face between the paint of the nose and roughly the beginning of the ears.

Surface reconstruction: Because the 3D coordinates are organized in the image grid, surfacere-
construction can be done eaily by defining two triangles between each set of four adjacent node
points. A triangular surface recnstruction is necessary because the matching methodis based ontri-
angular surface models. The resulting triangular surface model consists of node points, or vertexes,
conrected by edges to form triangular surface patches or polygons.

To speed upthe matching procedure, the number of triangular surface patches is reduced using Jade, a
multi resolution decimation based on agloba error (Ciampalini, 1997).

4. 3D Modd Matching

This section describes how a generic 3D modd of the face is deformed elastically to match the ob-
tained 3D model of the specific face The eastic surface matching is an extension of the dastic
matching of line drawings, described by Burr (1981) to threedimensions.

The matching procedure consists of a global matching step (alignment and scding) and a local
matching step.

Alignment and scaling using moments of inertia: To find maximum corresponcdence between
the generic and specific model, the models are first aligned and scaled as well as possible. For this,
different transformation methods can be used. We used a method based onthe inertia properties of the
models (Chaudhuri, 191). The principal axes of the models are @l culated, and the bounding boxes,
aligned with these principal axes, are defined. Using these bounding boxes, a trand ation vector t, ro-
tation matrix R, and scaling vedor s, are calculated to transform the generic model such that it
matches the spedfic model aswell as possible.

Local matching by deformation of the generic model to match the specific model: After
alignment and scali ng, geometrica differences between the generic and spedfic model are diminished
by an elastic transformation of the generic model. This transformation tries to minimize the dissimi-
larity measure between both models which is defined as the mean distance of al the node points of
the generic modd to the surface of the specific model and vice versa.



The mean dstance is calculated with a nonruniform weighing fador, so dssimilarity in the direction
of the frontal plane is weighed more than distances perpendicular to this plane.

Using this dissimilarity measure a3D forcefield can be defined acting between the generic model M
andthe spedfic model M. This forcefield consists of two parts: the pulling vectorsf , defined asthe
vedors pointing from their correspording prgjection pants p (j) on M towards the points p(j) of M
The pushing vectors f_, are defined as the vectors from the points p,(i) of M, painting towards their
corresponding projection pintsp (i) on My (seefigure 4).

Figure 4: Part of theforce field between Mg and M,

Based onthese sparsely defined pulling and pushing vedors, a smocoth displacement field D(p) can be
defined for any arbitrary point p in the 3D space. Thisis achieved by cdculating a weighed average of
the sparse force vedors fou(j), and fuus(i), such that force vedors close to point p have more influ-
ence than force vectors further from p. This weighing behavior is modeled by taking the Gaussian of
the distance between p and the base of the force vectors:
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Ng and Ns are the numbers of vertices of the generic model and specific model, respectively.

The factor y controls the damping. Values less than 1 result in overshoot, and values greater than 1
result in undershoot.

Here o5 controls the size of the neighbarhood in which forcevectors dill affed the displacement of p.
In effed osis avery important parameter of the proposed method because it cortrols the dagticity of
the generic model. When osis very large, al points will be displaced, while small oswill cause very

GG



locali zed displacements. osis the stiff nessparameter at the s" stiff ness $age. Burr proposed to change
o, iteratively according to:

o.,=0,F° s=0123,. (6)

where Fisaconstant 1 < F < 2, (we used 12). The value 6o depends on the size and shape of the
modelsto transform.

To reach maximum correspondence between the generic and specific model, the geometric differ-
ences should be removed very slowly. Thisimplies that deformations, as caused by the smoothed ds-
placement field in eg. (3), to the source model are goplied in an iterative way. One such deformation
isdefined by:

WK =Wkt 4+ D" k=0,1,2,3,.. (7)
WO =M, (8)

Where Wr represents the “warped” generic model after k iterations of elastic matching.

During the iteration process the stiffness of the model os deaeases, so deformations of the model
beame more local. To increase the robustnessof the method, we made the stiff nessat iterationk, de-
pending on the maximum displacement d.x of the model at iterationk-1.

dmax = maXV(ngG){HD(p)m (9)
As aresult of this, the model goes to the next stiffness sage only when the displacaments in the cur-

rent stiffness stage become smaller than a fador & of the current stiffness. This extra speed-limiting
factor is built in to make sure that the stiffnessof the model does not decrease too fast.

IF (dfs <&of") THEN s=s+1 (10)
With fador & between Oand 1 (we used 0.2). The stopping criterionis defined as:

d(M;,My) < threshold (11)

The parameter threshold can be chosen as snall asrequired (at the st of processng time).

5. Experimental Results

We recorded severa test sequences under different lighting condtions. Figure 5 shows the recorded
stereo image pair in wedk diffuse lighting. Figure 6 illustrates one of the images used for calibration.
Therectified images are shownin figure 7.

b000006¢0

-

Figure 5: Original image pair Figure 6: Image of calibration pattern



Figure 7: Rectified image pair Figure 8: Center image and disparity field

Figure 9: Specific Face Figure 10: Recorded image Figure 11. Generic Face
with texture added to the sub-
ject'sface

In figure 8 a (part of) the center image and resulting disparity field can be seen. After facesegmenta-
tion and surface mesh generation the specific face S is obtained, shown in figure 9. Figure 10 illus-
trates an image with texture added to the facethat was used to test the matching stage of the ago-
rithm. Figure 11 shows the generic face G. Finaly, figure 12 shows three models in three viewing
pasitions. The left-most model is the reconstructed spedfic face of figure 10, the right-most model is

the globally matched generic face according this data and the center model is the locdly matched face
andfinal result.

The reconstructed specific face dealy resembles aface When comparing the eye distance between
the rea subject and the reconstructed specific face they bath approximately measure 6.5cm. The gres
and noe are clearly visible, however, the mouth has very little depth details. Throughou all of the
face asmall amourt of noiseis present due to disparity estimation errorsthat were in the order 1.0
pixel. These errors resulted from camera luminance gain differences and speaular refledivity of the
subject’ sface and, if necessary, can be reduced by using active structured light or additional texture
(seefigure 10).

The shape of the chin and length of the nose of the resulting face (locally matched) clearly matches

Figure 12: L ocally matched and globally matched specific facein threeviewing positions.




the specific face. Additionally, it has inherited the smooth facefeatures from the generic model.

We compared the threemodels using a dissmilarity measure defined as the average distance between
the threemodels in figure 12. The specific and generic face have average distance 10.2 mm, the re-
sulting and generic face have distance 9.8 mm, the spedfic and resulting facehave distance 1.8 mm.
The subjective and abjective evaluations $ow that the matched face contains the smoathness and
clear features of the generic face together with the geometry of the specific face.

6. Conclusions

In this paper we have presented a system for automatic generation of a spedfic and semantic 3D
model of a human facefrom arecorded stereoscopic image sequence. We have shown that the system
is capable of producing goodresults. The resulting 3D face model accurately represents the geometry
of the recorded subject whilst still containing the semantic information and underlying muscle struc-
ture. The results can be further improved by optimizing the recording. That is, either improving the
lighting condtions during image a@uisition or use of structured light, multi ple cameras or other mo-
dalities (e.g. range data). The elastic surface matching stage is very promising. Although agoodinitial
global matching is required (provided by the matching of the moments of inertia) the elastic matching
is able to deform the generic model in such away that the semantic information (mouth position, eye
pasition, etc.) istransferred to the specific model.
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