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Causal effect of covid vaccination on mortality in Europe


André Redert, PhD

Independent researcher


Rodotti, Netherlands, 24 February 2023


Abstract 
This report investigates short-term causal vaccine-mortality interactions during booster 
campaigns in 2022 in 30 European countries (population ~530M). An infection-vaccination-
mortality model is introduced with causal aspects of repeatability, random chance, temporal order 
and confounding. The model is simple, has few or even zero prior model parameters and is 
unbiased in causal mechanisms and strengths. Confounders are taken into account explicitly of 
mortality-caused fear incentivizing vaccinations and four related to covid infections, and 
generically for all long-term confounding. Bayesian probabilities quantify all interactions, and from 
observed weekly administered vaccine doses and all-cause mortality, mortality on short-term 
caused by a vaccination dose is estimated as Vaccine Fatality Ratio (VFR).

	 VFR results are 0.13% (0.05%-0.21%, 95% confidence interval) in The Netherlands and 0.35% 
(0.15%-0.55%) in Europe, subtantially transcending covid IFR. Additionally, sewer-viral-particle 
experiments suggested vaccination induces covid-infections and/or reactivates latent viral 
reservoirs.

	 The evidence of a causal relationship from vaccination to both infection and mortality is a very 
strong alarm signal to immediately stop current mass vaccination programmes.


Statement of Interest 
I declare that this work was done with an interest in science, and personal safety for myself, loved 
ones, and humanity. Pro bono, independent, without payroll, not funded. The only competing 
interest was time taken from my normal job (indy app developer in entertainment and music). If 
you want to support my work, feel free to buymeacoffee.com/AndreRedert, or consider one of   
the apps at rodotti.nl and qneo.net.


1. Introduction 
Since the covid vaccination campaigns, high unexplained excess mortality rates have been 
observed worldwide, starting in the second half of 2021. In The Netherlands (population ~18M), 
excess mortality rates went up to ~80 people/day (excess ~20%) at end of 2022, before rising 
even more due to influenza. Based on the sparse publicly available Dutch data on mortality and 
vaccination, excess mortality was found to correlate positively with vaccination on long-term 
[Re1], and short-term [Mee,Sch,Re2]. Figure 1 illustrates this correlation for weekly 4th/5th 
vaccination campaign doses and all-cause mortality. Detailed case-based data has still not been 
made publicly available, and it remains a scientific challenge to analyse excess mortality using the 
sparse data that is both available, and reliable.

	 This report has the same goal as my earlier work [Re2], estimating short-term Vaccine Fatality 
Ratio (VFR) on the basis of weekly administered vaccine doses and all-cause mortality; two 
integer, countable parameters that do not suffer from the subjectivity and ambiguities in PCR 
testpolicies, covid diagnoses, cause of death atttributions, and modeling in mortality prognoses.


 of 1 22

http://buymeacoffee.com/AndreRedert
http://rodotti.nl
http://qneo.net




Figure 1: Left) Weekly rates in the Netherlands for mortality and administered covid vaccine doses 
[Src], scaled to illustrate temporal correlations. Right) Pearson correlations are very high. Different 
regression factors may be related to the campaigns’ target ages (60+ and 12+). 

New in this report is explicit causal modeling on the basis of repeatability, temporal order, 
handling of infection-based and generic confounders in a combined infection-vaccine-mortality 
(IVM) model, and the Bayesian framework to handle randomness and all statistic parameter 
estimation. The extraction of short-term events introduced in [Re2] to remove effects and 
confounding on long-term, see Figure 2, will be reused.




Figure 2: Same data as in Figure 1, short-term filtered to extract random weekly variations, easing 
a single analysis with multiple campaigns combined.


Infection data will be used of PCR tests and viral particle presence in sewer wastewater [Med], 
see Figure 3. As PCR tests are unreliable (false positives/negatives, test-willingness/policy-
dependence, arbitrary CT-values, etc), and sewer data is more objective but less widely available, 
the relative performance of a simplified vaccine-mortality (VM) model without infections will be 
evaluated to widen the applicability of the method. Experiments will be performed for booster 
campaigns in 2022, in The Netherlands as well as 30 European countries (population ~530M).




Figure 3: PCR+ tests and viral particle presence in sewer wastewater, The Netherlands. Sewer 
data may be more objective, but lags PCR+ infections by a few weeks, and also lags vaccinations 
and mortality as in Figure 1.
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2. Method 
In the next sections I will present my method in many high-detailed steps. The final result, 
however, is simple and contains a bare minimum, or even zero, model parameters.


2.1 Causality 
The well-known “Correlation does not mean causation” is a vague statement that may lead to the 
false believe that all correlation is insufficient as evidence of causation. However, correlation is all 
one can observe, there is no alternative to determine causality. Pure causality cannot directly be 
observed as it is an “abstract philosophical concept that indicates how the world progresses” 
[Wik]. One can easily defend that:


“The origin of all correlation is causality” 

The well-known vague statement means that when A and B are correlating, causation may not be 
between A and B (in either direction) but may involve a common cause known as a confounder. 
Correlations may also occur by chance, when an “oracle” set of events in the universe conspires 
to create the correlation; a confounder that cannot be known by definition, referred to by 
“random”. Theoretically, such a random oracle could exist for every possible A and B, thereby 
pulling any practical use of causality out of the scientific realm .
1

	 Requirements for establishing causality have been studied for epidemiology in particular, listing 
consistency and strength of association, confounding, temporality, experiments and plausibility, 
based on the famous Bradford Hill criteria [Io1, Shi]. Consistency and strength of association can 
be rephrased as strong correlation, which can readily be observed in Figures 1 and 2. 
Repeatability, or rechallengable, and random chance are already essential ingredients in 
correlation analyses; e.g. covariances are characterizations of commonalities in many repeated 
observations, and statistical techniques exist to obtain mean and deviation of such covariances. 
Temporality, also known as temporal or causal ordering, and confounding are unique for causality, 
the reason to include these in my prior work [Re2] via a causality test involving temporal 
correlation and short-term-filtered observations to remove all long-term confounding.

	 In controlled experiments, one can make event A occur at will, which is very effective for 
excluding chance and confounders. Observational studies like in this report can, however, still 
accomplish the same goal via additional requirements (see also e.g. [Gia]): natural repeated 
occurrence of A, appropriately patterned in time to enable detection of the same pattern later in B 
according to temporal order, plus more emphasis on excluding a confounder/chance origin of the 
observed pattern. Finally, plausability requires a known mechanism that makes A cause B. For 
current covid vaccines, there are plenty of plausible mechanisms that lead to mortality, e.g. acute 
myo/pericarditis later followed by sudden cardiac arrest [Sun], and frail elderly for which 
vaccination is the last push over the edge [Nor].

	 This report examines causality between observed vaccinations A and mortality B, incorporating 
repeatability, temporal ordering, random chance and confounders via several known and unknown 
mechanisms. These include a reverse mechanism from mortality to vaccinations and four 
mechanisms via infections.

	 One cannot keep adding possible confounders indefinitely, as that inevitably leads to 
overmodeling. Every possible confounder exhibits random correlations with both A and B, even 
unrelated ones such as the weekly number of planet-star eclipses visible from earth. A sufficient 
number of confounders will swamp any causal effect between A and B at some point. My method 

 This seems to be the objective of the vague statement when it comes to vaccination and 1

mortality.
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includes short-term filtering of all observed data, eliminating all confounders that act on a term 
longer than several weeks, even those unknown, while preventing overmodeling. As collateral 
damage, the method can only measure causal effects that act on short term and is blind to 
longer-term effects.

	 The random weekly variations in infection, vaccination and mortality rates are used as 
repeated, patterned ocurrences to detect temporal order in possible causal directions, while 40+ 
weeks of data in 2022 are used for statistical repeatability. The Bayesian probability framework is 
used to handle random chance.


2.2 Infection-Vaccination-Mortality model 
Figure 4 shows my causal infection-vaccination-mortality (IVM) model. Observables are infections, 
vaccinations and mortality, all weekly absolute numbers in a population. Drivers of the 
observables are viral waves, campaign dynamics and seasonal baselines. Natural immunity is 
lifesaving in the real world but not modeled; it acts via a negative feedback loop on infection, 
whose observations already include the full effect of natural immunity.




Figure 4: Causal infection-vaccination-mortality (IVM) model. The path of vaccines to mortality has 
focus. The other five causal paths are confounders. Viral waves, campaign dynamics and seasonal 
baseline drive the observables and are random sources. As infection data is less reliable, the 
relative performance of a vaccination-mortality (VM) model without infections and only two causal 
paths will be evaluated also. 

Six directed paths, shown as arrows in Figure 4, model the causal interaction from some event in 
one observable to events in another observable, either within the same week or in a few future 
weeks, but not past weeks. Vaccine-induced immunity and damage are modeled together as a 
single net interaction. Interaction strength is measured in units of a ratio such as mortality per 
infection (the wellknown Infection Fatality Ratio or IFR), mortality per vaccination (Vaccine Fatality 
Ratio or VFR), etc.

	 The focus of this report is measuring VFR via the causal path of vaccination to mortality. The 
backward confounding path models vaccinations incentivised by fear, caused by observed high 
excess mortality. Such confounding may add to a positive correlation as in Figure 1, which can 
easily, but falsely, be attributed to vaccine damage in an analysis that does not take temporal 
order into account. The four paths connected to infections relate to other confounding 
mechanisms, among which the depletion of the reservoir of vulnerable people.
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2.3 Vaccination-Mortality model without Infections 
Infections are the least reliable in the IVM model, not only in terms of data reliability but also by 
their origin and role in the model. Ideally, two types of infections are taken into account if reliable 
data is available: biological infections which are caused by viral waves and lead to physical 
illness/death, and reported infections that are published by by mass-media with main purpose to 
induce psychological fear. Two different infection observables, however, strongly increases model  
dependence on unreliable data, and complexity by number of causal interactions.

	 I will simply keep one infection observable: the more objective sewer viral particles scaled to 
equivalent PCR+ tests by calibration in the first part of 2022. The apparent delay in sewer-to-PCR 
data will be investigated: possibly, compensating the delay may do more harm than good in a 
causal context.

	 The IVM model can be used when reliable sewer and/or PCR+ infection data are available. To 
widen the method’s applicability, a simplified model without infections will be introduced: the 
vaccine-mortality (VM) model, as was effectively used in my prior work [Re2]. The VM model does 
not suffer from unreliable infection data, but cannot compensate explicitly for infection-based 
confounders. Its performance will be evaluated relative to the IVM model.


2.4 Bicausal model for data delays 
It may happen that observed data include delays due to a variety of reasons, e.g. test-delays until 
symptoms occur and sewer viral particle data lagging PCR data, see Figure 3. Further, it is 
common practice to delay vaccination status by several weeks after the “act of vaccination”  to 2

account for immunity build-up. Delays are less expected for raw numbers of objectively-dated  
events as vaccination doses or mortality, but they are still easily introduced e.g. by accident at 
data transfer to 3rd party data aggregators;, or even purposefully for e.g. visualization or 
integration of datasets.

	 Due to unequal delays in observables, temporal ordering may get mixed up and effects may 
migrate between forward and reverse causal paths in the model, see Figure 5 left. For example, 
due to a one-week-delay in data, a several-weeks-enduring causal effect in one direction partly 
migrates to the causal path in opposite direction. This may not be easily identifiable; the migrated 
part will also change numerically, as paths in opposite directions have inverted units.




Figure 5: The bicausal model combines two oppositely-directed causal paths into a single 
bidirectional (“bicausal”) path. All data is simulated for illustration purposes. The green zero means 
a zero effect value. 

 The clarity of the word “vaccination” has eroded substantially in recent years.2
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For this reason, I will model every causal path pair as a single bicausal path that interacts both 
backwards and forward in time using one numerical unit, arbitrarily chosen from original forward 
or backward path. Within a bicausal path, data delays manifest simply as a single shift, see Figure 
5 at right. Whenever the forward or backward causal path dominates and activity persists for a 
few weeks, any delays can be identified by visual interpretation, using common sense aided by 
strength certainty intervals; I will not try to model/automate such an identification process. 

	 It may appear that the bicausal model causes information loss: in Figure 5, the two causal 
paths provide 2x5 = 10 measurements, while one bicausal path provides 9 measurements, one 
less. The two instantaneous parts in the two causal paths at  get combined into the single 
instantaneous measurement of the bicausal path. This information loss, although real, is not due 
to the bicausal model, as in the causal model the instantaneous parts get mixed up too, albeit 
implicitly. Based on well-known onset latencies of the six causal paths’ mechanisms, however, 
some interactions are zero in the first week (see Figure 5), and all measurements will be uniquely 
assignable to the six causal mechanisms, both in causal and bicausal model.


2.5 Characteristics of drivers and causal paths 
Table 1 shows onset latencies, temporal dynamics, and effect sizes of drivers and causal paths.  
All effect sizes are very rough estimates by order of ten, and the expected sign of each of the six 
paths is never used. Measurements will thus never be restricted by a priori sign expectations, but 
a posteriori inspected for consistency. Free sign modeling is required for vaccine-induced 
immunity and damage, as they have opposite signs but reside in the same path. Path interaction 
strengths will be modeled both with prior expectations according to listed effect sizes, and 
without, that is, completely free of any prior expectation.

	 Numerically, covid IFR is in the order of 0.1% [Io2]. The VFR is below ~0.1% given that most of 
the population was vaccinated yearly, baseline mortality is yearly ~1% and total observed excess 
mortality is in the order of ~10%. Vaccine-Effectivity against infection (VE-I) and mortality (VE-M) 
may start at ~100% but negative VE-I (positive damage) is known to possibly occur both in the 
the first weeks during build-up of immunity, and after several months when immunity wears off. 
The size of vaccine-caused immunity is not plain Vaccine-Effectivity against mortality (VE-M), but 
scaled by IFR as the paths in my model relate to all-cause mortality instead of only infection-
attributed mortality, while assuming that ~100% of the population gets infected each year.

	 Viral waves, campaign dynamics and seasonal baseline typically evolve on the longer term of 
months/years, with random variations acting by definition on the shortest term of data resolution, 
weeks in this report. Vaccine-caused effects have a fast, biological, single-persion underlying 
mechanism, while mortality-induced fear has a slower, psychological, inter-personal nature, via 
fear of death induced by observing deaths of others.

	 For this report, the most essential property in Table 1 is the low onset latency of vaccine 
damage: adverse systemic events can occur within minutes, with immunity build-up following only 
in the next 2-4 weeks. The path from infection to death, illness, typically takes at least a week, 
and slightly above 2 weeks on average [Mar]. The causal path of fear requires data collection, 
aggregation, and mass-media reporting of high infection numbers, or high excess deaths that are 
above expectation according to some prognosis. While in 2020 it was custom to broadcast fear-
inducing infection and mortality numbers daily, in most of 2022 the number of infections was 
relatively low, and occurring high excess deaths were not attributable to covid and reported 
seldom, late, or not at all.

	 Finally, with depletion the reservoir of vulnerable people more susceptible to mortality declines 
during periods of excess mortality. Although this effect has zero latency, it acts cumulative and is 
thus extremely small on the short term, and dynamical, if at all, only on the long term. 

Δt = 0
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Table 1: Time scales, onset latencies and rough order of effect size of drivers and causal paths. 

2.6 Confounders 
My IVM model handles 5 confounders explicitly, but clearly the list of actual confounders may be 
longer and full of unknowns. As stated in the causality section, unlimited adding of possible 
confounders leads to overmodeling. Instead, I will review a few known confounders that may have 
effect in this model and generic classes of (unknown) confounders.

	 First, when close-ones (family, friends, neighbours etc) die, shock and mourning may delay 
planned vaccinations. This path is the same as the fear path, but with opposite/negative sign, not 
delayed/amplified by mass-media and thus faster/smaller. In most cases, the vaccination will be 
catched up shortly after, resulting in a slight delay in a few vaccinations. If present, this will be 
measured as minor initial negative fear, with zero net effect after a few weeks.

	 Secondly, during vaccination campaigns, typically the smaller group oldest and most 
vulnerable get vaccinated first, and the broader group of younger and healthier people follow. If 
vaccinations do cause mortality on the short term, concentrated in older/vulnerable people, the 
order of vaccinations may create a bias towards “mortality first” followed by “later vaccinations”, 
a temporal order and positive-signed effect equal to that of the fear path. This confounder makes 
vaccine damage appear as mortality-induced vaccinations and thus leads to underestimation of 
vaccine damage, an acceptable bias for  measurements.

	 Many confounders may additionally come into play, known or unknown. All that apply on the 
long term will be irrelevant, as this study looks only at short-term events, as in Figure 2. Whenever 
a confounder acts on the short-term, it may reveal itself in both causal directions with similar 

Driver Onset latency Time scale Effect size (10-order)

Viral infection waves - month 100% population/year

Vaccination campaigns - month 100% population/year

Seasonal mortality baseline - month 1% population/year

Random fluctations in each immediate week* as observed from data

* zero, limited by source data resolution

Causal path Onset latency Time scale Effect size (10-order)

Depletion M to I >> week months Negligible < 0.1%

Illness I to M (IFR) week or more 2 weeks 0.1%

Damage V to M (VFR) immediate months 0.1%

Immunity V to M (~VE-M) 2-4 weeks months 0.1%

Damage V to I (~VE-I) immediate 2-4 weeks 100%

Immunity V to I (~VE-I) 2-4 weeks months 100%

Fear I to V week or more week 1

Fear M to V week or more week 100

IFR: Infection Fatality Ratio, VFR: Vaccine Fatality Ratio

VE-I: Vaccine Effectivity against infection, VE-M: against mortality


~ the modeled effects are proportional to VE, and involve additional products with IFR or driver effect size

VFR
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strength. In the bicausal measurements in Figure 5, this would appear as a signal without any 
specific temporal order: evidence of confounding, and absence of causal evidence.

	 If on the other hand a significant vaccine immunity/damage signal is measured, in absence of a 
significant fear signal, this is evidence that the signal may not originate from a confounder, and 
that the measured vaccine effect may be real and causal. Exactly such a signal was found in 
[Re2]. Of course, it is possible that an unidentifed, short-term causally directed confounder exists.  
Ignoring alarming evidence by assuming the existence of such a highly characterized but 
unidentified confounder seems unwise.


2.7 Mathematical representation 
Mathematically, I present my model first in full, long-term causal form, and reduce it subsequently 
to the short-term bicausal model. To start off:


	 (1)


	 (2)


	 	Time, integer week number, from 

	 Total number of analysed weeks in 2022 (typically  for weeks 9-50)


	 Weekly number of infections, administered vaccine doses, and all-cause mortality

	 Long-term mortality baseline, captures slow variations over months/years

	 Short-term weekly variations, uncorrelated zero-mean random process


	 Same as mortality baseline, but for viral waves and vaccinations

	 Temporal convolution


	 Causal function from A to B, valued only for 

	 Duration of short-term causal effect (typically   weeks)


	 Some prognosis, expected mortality, slowly varying over time (seasonal)


	 Excess mortality with respect to the prognosis/expectation

	 Infection Fatality Ratio, total mortality caused by infection

	 Vaccine Fatality Ratio, total mortality caused by vaccination


The  and  are the drivers. The “baselines”  vary slowly on the longer-
term of a month/year. They capture viral presence waves, overall vaccination campaign dynamics, 
and mortality of seasonal waves, other-cause waves (covid, NPIs). They also capture confounders 
acting between them, on the long-term, such as vaccination campaigns planned during covid 
waves. The  random processes describe the spread around the baselines, or weekly 
variability of infections, vaccination and mortality originating from chance. They are zero-mean 

I(t) = bI(t) + rI(t) + {V * FV→I} (t) + {MΔ * FM→I }(t)
V(t) = bV(t) + rV(t) + {I * FI→V} (t) + {MΔ * FM→V}(t)
M(t) = bM(t) + rM(t) + {I * FI→M}(t) + {V * FV→M}(t)

MΔ(t) = M(t) − Mexpectation(t)

IFR = ∑
0≤Δt<ΔT

FI→M(Δt)

VFR = ∑
0≤Δt<ΔT

FV→M(Δt)

t 0 ≤ t < T
T T = 42
I, V, M
bM

rM

bI, rI, bV, rV

*
FA→B 0 ≤ Δt < ΔT
ΔT ΔT = 2..5
Mexpectation

MΔ

IFR
VFR

bI, bV, bM rI, rV, rM bI, bV, bM

rI, rV, rM
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and uncorrelated over time and with respect to eachother, and non-stationary with variance 
changing slowly over the longer-term together with . 

	 The six  causal functions model the six causal paths in Figure 4, with main focus on 

. All  operate by temporal convolution, a linear operator. The linearity of  is 
particularly justifed, as individual biological mechanisms within a population have no direct causal 
interaction that could lead to substantial nonlinearities. For fear paths  and , linearity 
may be less defendable as the underlying psychological mechanism may involve nonlinear 
effects, e.g. “100 deaths” causing double the fear of “99 deaths”. For immunity path , and 
possibly , one can argue that these should include a product with viral presence/infections  
, but this is not taken into account for mathematical simplicity. An argument that justifies this 

choice partly is that covid has become endemic and viral waves are less extreme. Also, other 
pathogens provide a permanent infectious background and it makes sense to evaluate vaccine 
effectivity always and only against all-cause mortality [Ben]; ideally infections  would represent all 
pathogens, or even other mortal threats . Altogether, modeling of  and  may thus be 3

more accurate than the other paths, which is acceptable regarding the aim of this report.

	 The mortality to vaccination and infection functions ,  have  as argument; fear 
and depletion are caused by excess mortality or above-expectation mortality . 

There are other ways expectations may impact , e.g. when a newer expectation is published 
that overshadows an older expectation, the newer creates additional fear and it may thus appear 
with a positive sign: . For this analysis, it is irrelevant how and 
when expectations are constructed, whether or not they include the effects of covid, NPIs, 
whether calculated by a national institute or emerged within the minds of individuals, whether their 
effect sign is positive or negative. What is important, is that expectations change slowly over time 
t,  and that the sign of actual, observed mortality  is always positive in .


2.8 Short-term filter 
As in [Re2], I apply a linear temporal filter  on source data  to remove all long-term 
events and extract short-term events in  (with a hat), see also Figure 6:


	 (3)


Applied to (1), this results in:


	 (4)


bI, bV, bM

FA→B

FV→M FA→B FV→M

FM→V FI→V

FV→I

FV→M

I

I
FV→M VFR

FM→V FM→I MΔ

M − Mexpected

FM→V

Mnewer expectation − Molder expectation

M MΔ

W(Δt) I, V, M
̂I, ̂V, M̂

W(Δt) = [−0.05 − 0.25 + 0.6 − 0.25 − 0.05] for Δt ∈ [−2,2]
̂I(t) = {W * I}(t)
̂V(t) = {W * V}(t)

M̂(t) = {W * M}(t)

̂I(t) = ̂rI(t) + {M̂ * FM→I} (t) + { ̂V * FV→I} (t)
̂V(t) = ̂rV(t) + {M̂ * FM→V}(t) + { ̂I * FI→V} (t)

M̂(t) = ̂rM(t) + { ̂I * FI→M} (t) + { ̂V * FV→M}(t)

 Mass-media have suggested vaccination protects against car crashes.3
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Figure 6: The temporal filter W extracts events with a short temporal scale, and removes events  
with longer temporal scale. 

Importantly, all causal functions  are unaffected by the short-term filter, and subsequently so 
is  in (2). The short-time versions of source data  are zero-mean random 
variables, illustrated by Figure 2. All long-term baselines  and mortality expectation 

 have disappeared, also causing excess mortality  in (1) to be replaced by plain 

short-term filtered mortality  in (4). The filtered versions of drivers  have slightly 
reduced variance compared to the unfiltered signals, and are still non-stationary.

	 All of this is irrespective of the specific choice of filter , as long as it extracts short-term 
events as in Figure 6. The filter choice (3) in this report is given by , 
where  is a Dirac delta function,  is a zero-mean, -deviation Gaussian, one of the smoothest 
filters possible, and  is chosen to ensure that  is zero-mean (sum coefficients is zero). The filter 
choice in [Re2], , was an intuitive approximation of the filter 
in this report.

	 As the same filter is applied to all observables, it does not bias the short-term measurements 
towards any of the causal paths, or towards any direction within any path; the filter may even be 
time-assymetric, e.g. a 3rd derivative filter [-1 +3 -3 +1], as possible time delays due to the filter 
do not affect measurements of . The filter also does not bias measurements by sign. In 
combination with zero-mean prior expectations on the values of , the filter may bias 
measurements towards zero, with a relative strength growing with event time scale. Aggregates of 

 such as  and  will then be biased to zero, or equivalently underestimated in size.

	 In the results section, I will illustrate a few alternative filters as well as absence of the filter, and 
complete relaxation of the prior expectations. For readability: I will leave out all hats from this 
point on. In all that follows, observables  are short-term-filtered.


2.9 Short-term causal IVM model, prior variances and constraints 
The short-term causal IVM model (4) is here denoted without hats:


	 (5)


FA→B

VFR ̂I(t), ̂V(t), M̂(t)
bI, bV, bM

Mexpectation MΔ

M̂ ̂rI(t), ̂rV(t), ̂rM(t)

W
W(Δt) ≈ δ(Δt) − KG1(Δt)

δ Gσ σ
K W

[−0.1 − 0.25 + 0.7 − 0.25 − 0.1]

FA→B

FA→B

FA→B IFR VFR

I, V, M

I(t) = rI(t) + {M * FM→I} (t) + {V * FV→I} (t)
V(t) = rV(t) + {M * FM→V}(t) + {I * FI→V} (t)
M(t) = rM(t) + {I * FI→M} (t) + {V * FV→M}(t)
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I model all  and  components of drivers  and causal interactions  as 
independent, normal-distributed (Gaussian) stationary random variables. The original non-
stationarity of drivers  is remodeled by a slightly higher overall variance, namely that of 
the observed :


	 (6)


For the  variances one finds using the effect sizes in Table 1:


	 (7)


These values are rough orders, which is accurate enough as they are only used as so-called 
“priors” to slightly constrain the model; they bias measurements of  to zero in the presence 
of insufficient evidence in the observables. The priors’ influence decreases the more informative 
observational data  is available. I will alternatively allow for completely free causal 
interactions, relaxing prior variance constraints (7), to prevent underestimation of interactions 

:


	 (8)


Using Table 1 one finds that fear and depletion causal paths have onset latencies beyond a week:


	 (9)


Although the illness path, death caused by infection , also has an onset latency of a week, I 
choose not to take it into account explicitly as a prior restriction. The three restrictions (9) already 
suffice to disambiguate bicausal interactions at , and it is plausible that a highly vulnerable 
person dies within a week after infection due to illness caused.


2.10 Time resolution and onset latency 
Figure 7 illustrates how finite temporal data resolution affects observations and causal functions 

. The underlying (inaccessible) time-continuous causal mechanism  (with upper c) translates 
to week resolution by a specific triangular-shaped time-symmetric aggregation filter :


	 (10)


with  continuous (real-valued) time in weeks. The triangular aggregation effect happens always, 
no matter how fine the time resolution used. The week-resolution used in this report means that 
any event pair separated by 3.5 days or more, is thus captured more by  than .


t Δt rI, rV, rM FA→B

rI, rV, rM

I, V, M

σrI
= σI σrV

= σV σrM
= σM

FA→B

σV→M = 10−3 σM→I = 10−3 σI→V = 1
σM→V = 102 σI→M = 10−3 σV→I = 1

FA→B

I, V, M

FA→B

σA→B = ∞

FI→V(0) = FM→V(0) = FM→I(0) = 0

FI→M

Δt = 0

F Fc

Λ

F(Δt) = {Fc * Λ}(Δt) = ∫Δtc
Fc(Δtc)Λ(Δt − Δtc)dΔtc

tc

F(1) F(0)
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Figure 7: Resolution effect example for vaccination to mortality. Event pairs separated by 2 days 
are captured by  and , randomly with probability 5/7 and 2/7 respectively, 
depending on location of events within the week. The amounts are described by triangular 
function  of separation duration.


Most important for this report, any event pair separated by a week or more will under no 
circumstance affect , justifying the onset latency constraints (9).


2.11 Bicausal IVM and simplifed VM model 
The bicausal IVM model combines the causal model’s six paths as in Figure 4 into three bicausal 
paths, by new functions  (note the double arrow):


	 (11)


Each  will be measured and is subsequently uniquely decomposable into  and , 
as the latter are both only valued for . Ambiguities at  are completely resolved by 
onset latency constraints (9). The scale of   has the same scale as  namely B per A, 
and thus ’s scale of A per B is corrected for in (11). Note that the  in (11) models the 
exact same physical event as in (5), with same accuracy, but with a slightly different mathematical 
representation. Under expected circumstances where causal path effects are relatively small 
compared to the drivers, the difference is negligibly small.

	 The combined functions can be chosen as  or  for each of the three path pairs in 
causal model (5). I choose them to match the biological causal paths, at the same time arriving at 
only two equations:


	 (12)


Variances (7) combine via (11) into:


	 (13)


From here, the simplified bicausal VM model without infections is:


	 (14)


FV→M(0) FV→M(1)

Λ

F(0)

FA↔B

FA↔B(Δt) = FA→B(Δt) +
σ2

B

σ2
A

FB→A(−Δt) , − ΔT < Δt < ΔT

FA↔B FA→B FB→A

Δt ≥ 0 Δt = 0
FA↔B FA→B

FB→A FB→A

FA↔B FB↔A

M(t) = rM(t) + {V * FV↔M}(t) + {I * FI↔M}(t)
I(t) = rI(t) + {V * FV↔I} (t)

σV↔M = 10−3 σI↔M = 10−3 σV↔I = 1

M(t) = rM(t) + {V * FV↔M}(t)
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with only one prior  from (13). In [Re2],  of this bicausal VM model was estimated by a 
Pearson correlation trend factor:


	 (15)


This estimate was sub-optimal; next follows an optimal estimation procedure.


2.12 Bayesian probabilities and estimating parameters 
The Bayesian probability framework is an ideal, systematic tool to obtain conditional probability 
densities  of model parameters  given observed . From the  relevant 

statistics as mean and variance of  can be extracted. Denoting all drivers by , 
one obtains for the causal IVM model :


	 (16)


First row: the intermediate roles of drivers  are taken into account via integrals, and observations 
and model parameters are reversed bringing up additional priors, of which the model parameters  

 are independent. Second row: prior  is expanded in 6 causal paths  and all  
components. Row 3: prior  is split in individal drivers and time . Rows 4-6: causal IVM 
model (5) enters via three Dirac  functions plus so-called determinant of Jacobian  that 
describes the multiple occurences of  in the  arguments. 	The Jacobian  is a huge -by-

σV↔M FV↔M

FV↔M(Δt)[Re2] ≈
COV(V(t), M(t + Δt))

VAR(V(t))

PF|I,V,M F I, V, M PF|I,V,M

F r = {rI, rV, rM}
F = {FV→I, FI→V, FI→M, FM→I, FM→V, FV→M}

PF|I,V,M = ∫r
Pr,F|I,V,M = ∫r

PI,V,M|r,FPr,FP−1
I,V,M = P−1

I,V,MPF ∫r
PrPI,V,M|r,F

= P−1
I,V,M ∏

FA→B∈F
∏
Δt

GσA→B(FA→B(Δt))

∫rI ,rV ,rM
∏

t

GσI(rI(t)) ⋅ GσV(rV(t)) ⋅ GσM(rM(t)) ⋅

det J(F ) ⋅ δ (I(t) − rI(t) − {V * FV→I}(t) − {M * FM→I}(t)) ⋅

δ (V(t) − rV(t) − {M * FM→V}(t) − {I * FI→V}(t)) ⋅

δ (M(t) − rM(t) − {I * FI→M}(t) − {V * FV→M}(t)) ⋅

= K ∏
FA→B∈F

∏
Δt

GσA→B(FA→B(Δt)) ⋅

∏
t

GσI(I(t) − {V * FV→I}(t) − {M * FM→I}(t)) ⋅

GσV(V(t) − {M * FM→V}(t) − {I * FI→V}(t)) ⋅

GσM(M(t) − {V * FV→M}(t) − {I * FI→M}(t))
= Gμ,Σ(F ) ∼ e− 1

2 {(F−μ)†Σ−1(F−μ)}

r

PF PF FA→B Δt
Pr 0 ≤ t < T

δ J
I, V, M δ J 3T
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 matrix full of zeros, ones, and (minus the) values of all 6 causal paths . Luckily, this 
determinant can be computed analytically:


	 (17)


where the 2nd equality is due to onset latency constraints (9). At the 3rd equality in (16), the 
determinant is gone, prior ’s value is unknown and replaced by constant ; the prior is 

constant as  are fixed, observed source data. Also, the integrals transfer the causal model 
from the  functions to the priors of the drivers . As the final result contains only Gaussians and a 
constant, it must be a simple multivariate Gaussian distribution  with mean  and 

covariance matrix  as in the final row.

	 For the bicausal IVM and VM models,  is also 1 and a similar multivariate Gaussian is 
obtained. Mean and variance of ’s single components or linear combinations such as  can 
be obtained analytically. For example, one finds for the bicausal VM model a so-called least-
squares/minimum-norm solution (with  for clarity):





	 (18)


where  is the identity matrix,  is matrix transpose, and ± separates mean and standard 
deviation. If the prior variance on  is completely relaxed ( ), one gets the so-
called least-squares solution:


	 (19)


3T FA→B

det J(F ) = {1 − FM→V(0)FV→M(0) − FI→V(0)FV→I(0) − FI→M(0)FM→I(0)
−FI→M(0)FM→V(0)FV→I(0) − FI→V(0)FV→M(0)FM→I(0) }T

= 1

P−1
I,V,M K

I, V, M
δ r

Gμ,Σ(F ) μ
Σ

det J(F )
F VFR

ΔT = 3

V =

V(2) V(1) V(0) 0 0
V(3) V(2) V(1) V(0) 0
V(4) V(3) V(2) V(1) V(0)

...
V(T − 2) V(T − 3) V(T − 4) V(T − 5) V(T − 6)
V(T − 1) V(T − 2) V(T − 3) V(T − 4) V(T − 5)

0 V(T − 1) V(T − 2) V(T − 3) V(T − 4)
0 0 V(T − 1) V(T − 2) V(T − 3)

, O =

0
0
1
1
1

Σ = (σ−2
M V†V + σ−2

V↔MI)−1

μ = Σσ−2
M V†M

FV↔M = μ ± diag(Σ)
1
2

VFR = O†μ ± (O†ΣO)
1
2

I †
FV↔M σV↔M = ∞

μ = (V†V)−1V†M
Σ = (V†V)−1σ2

M

 of 14 22



Bayesian approaches are ideal to obtain probabilistic answers to hard, binary questions such as 
whether “vaccination has a net mortal effect in the first few weeks” (hypothesis ), or not 
( ). With  mean and variance from (18), one finds:


	 (20)


This is a true probability, not a so-called likelihood ratio between two hypotheses: As the set of 
hypotheses  is complete in all possible outcomes, there are no other (unknown) 
competing hypotheses possible.

	 Any prior belief in any of the two hypotheses has already been accounted for in the calculation 
of . If one has a strong prior belief in , one should incorporate this by a negative-
mean expectation of  in the first few weeks, which is counter to commonly accepted 
knowledge that protective effects of vaccines do not occur in the first few weeks. Logically, one 
cannot first accept the computation of , and subsequently reject (20) on the basis that it 
does not incorporate an additional explicit prior biasing towards  reflecting one’s beliefs.


3 Results 
I apply the bicausal model to booster campaigns during 2022 in The Netherlands (population 
~18M). Infection, vaccination and mortality data are unstratified, weekly, total absolute numbers 
from public national sources [Src]. With PCR+ and sewer viral-particle-based infection data 
available, the IVM model is used to determine the usability of sewer data and relevance of 
infection confounders, all compared to the relative performance of the infection-less VM model. 
With the VM model, a few additional experiments are performed with different short-term filters 
and periods, mortality age groups, and relaxation of prior variances on causal interactions .

	 Finally, I apply the bicausal VM model to 30 European countries (~530M people) with data from 
aggregation sources [Eur, Owi] in 2022 during weeks 10-43 (limited by data availability).


3.1 Sewer data for infections in the IVM model 
Sewer viral particle data are publicly available for The Netherlands, see Figure 3. In weeks 1-20 of 
2022, PCR tests were performed in higher volumes; I use this period to compute a scale constant 
of PCR+ tests per sewer viral particle, and convert the more objective sewer data over entire 2022 
to PCR-equivalent infections .

	 Figure 8 shows results of the bicausal IVM model, with PCR and sewer infection data, weeks 
9-50 during the vaccination campaigns. Although few measurements are significant, a few 
observations can be made. PCR-based infection-to-mortality suggests a peak at , 
matching the expected average time from infection to death. The sewer-based curve peaks just 
significantly at , suggesting sewer-based measurements lag by a two-week time delay. 
Applying a minus-two-week-shift in sewer data to compensate the delay brings the sewer-based 
infection-to-mortality peak also at .

	 The individual PCR-based vaccination-to-mortality measurements of  and 5-week-net-
result -9±7% after vaccination are just significant, and the probability that the vaccine protects 
against infection (hypothesis ) is 91%. The original unshifted sewer-based measurements 
suggest that vaccination causes infections with a probability 83%. The 2-weeks shifted sewer 

Hmortal

H̄mortal VFR

Pr{Hmortal} = Pr{VFR > 0} =
1
2

+
1
2

erf(
μVFR

2σVFR

)

{Hmortal, H̄mortal}

VFR H̄mortal

FV→M

VFR
H̄mortal

F

I

FI→M(2)

FI→M(0)

FI→M(2)
FV→I

H−
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measurements solve this uncomfortable finding, but bring up a logical, causal issue: the shift 
brings the peak towards , infection-induced-vaccinations via fear. This is, however, not 
causally possible as the original unshifted sewer data cannot cause fear before being measured. 
As can be seen in Figure 3, PCR+ testing was quite low for most of 2022, and its media-reporting 
seem unable to have simultaneously produced the same required fear, as is also visible in Figure 8 
by  with 5-week-net-result -0.53±2.67.




Figure 8: Results for bicausal IVM model, infection-mortality and vaccination-mortality interactions, 
with PCR+ and sewer measurements, weeks 9-50 of 2022 in The Netherlands. Black dotted lines 
indicate week  is assigned to right, biological causal path according to onset latencies. Y-
axis has biological path scale. Grey areas  indicate  ±1 sigma interval. Pr indicates Bayesian 
probability of the biological path to be net positive or negative (hypotheses  and ). 

FI→V(1)

FI→V

Δt = 0

H+ H−
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These results suggest that sewer data should not be back-shifted in time, and that the viral 
particles in the sewer are caused by vaccination. The possibility that sewer data is measuring 
spike (S) particles created directly by vaccinations can be excluded, as there is no overlap 
between viral genes used for sewer measurements (N/E) and vaccination (S) [Med]. Recent 
research did find evidence that infections correlate strongly with vaccinations [Shr].

	 Using , a PCR-equivalent ratio of infections/reactivations per vaccination is found as 
just-not-significant 0.35±0.37, see Figure 8 right-center. Figure 9 shows the same result with 

: with more than 99% probability, vaccination causes viral particles to increase ( ) in 
the first three weeks since vaccination. The amount of equivalent-PCR-infections per vaccination 
is 0.50±0.21 (95% CI 0.08-0.92). This number is very high; possibly the equivalent PCR+/sewer-
particle scale factor is not well estimated or applicable. An additional explanation is that besides 
triggering infections, vaccinations may reactivate latent viral (particle) reservoirs.




Figure 9: The causal effect of vaccinations on infections as measured effectively by sewer viral 
particles.


3.2 IVM versus VM model 
Figure 10 shows  and  obtained via the IVM model via PCR+, plain and 2-weeks-
backshifted sewer-based infections, and the VM model without infections, in weeks 9-50 in The 
Netherlands. In all four cases a causal temporal order effect can clearly be seen, with mortality 
insignificant before vaccination and significant after. Also in all four cases,  equals 
0.09±0.03%, that is, vaccine-induced mortality in the same week of vaccination is near 0.1%, with 
3-sigma confidence. Finally, again in all 4 cases,  over 5 weeks is just insignificant at ca 
0.07±0.09%.

	 Apparently, infections did not confound mortality and vaccination in The Netherlands in 2022, 
in a significant way measurable by the IVM model. Based on these results, I conclude that the IVM 
model does not offer substantially different or better results compared to the simpler VM model 
without infection confounders.

	 The insignificance of  appears caused by a negative  after two weeks and an 
increasing sigma when aggregating  over  weeks. The positive-negative-dynamics 
of  are consistent with vaccination being the last push to mortality for highly vulnerable 
people. The probability that vaccination causes net mortality over the entire 5 weeks after 
vaccination ( ) remains however ca 75%-80% in all cases. The  found is lower but order-
comparable to that of my prior work [Re2], which found ~0.18% in weeks 9-34 of 2022, using 
age-correction in vaccination-mortality data, and a suboptimal estimation procedure.


ΔT = 5

ΔT = 3 H+

FV→M VFR

FV→M(0)

VFR

VFR FV→M

FV→M ΔT = 5
FV→M

H+ VFR
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Figure 10: Results for  and  with bicausal IVM and VM models, with and without 
infection confounder, weeks 9-50, The Netherlands.


3.3 Short-term filter, period, relaxation of prior, age groups 
Table 2 shows  using the VM model, for different short-term periods , filters  and 
relaxation of prior variance . It shows that shorter  periods lead to better/lower 
result variances, and that varying filter  has marginal influence. Most importantly, relaxing the 
prior from zero-mean Gaussian with  to a uniform unbiased prior with  
has no significant influence.

	 Figure 11 illustrates a few results: the significant result with  without prior, an isolated 
central peak in  with , and the erratic effect of not using any short-term filter. 
Figure 12 shows a result for age groups: significant  is concentrated at ages 65+.


Table 2:  and ( ) with bicausal VM model for several different short-term 
periods, filters, and relaxation of prior variance. 

FV→M VFR

VFR ΔT W
σV→M = ∞ ΔT

W
σV→M = 10−3 σV→M = ∞

ΔT = 2
FV→M ΔT = 16

FV→M

default VM model 0.12±0.04% (99.9%) 0.09±0.05% (97%) 0.07±0.08% (80%)

0.13±0.04% (99.9%) 0.10±0.05% (98%) 0.07±0.09% (79%)

0.14±0.04% (99.9%) 0.11±0.05% (97%) 0.07±0.09% (80%)

0.14±0.07% (97.7%) 0.13±0.10% (89%) 0.06±0.16% (66%)

ΔT = 5ΔT = 3ΔT = 2

 = [-1 +3 -3 +1]W

Relaxed prior σV→M = ∞

 = [-0.25   +0.5   -0.25]W

VFR Pr{VFR ≥ 0}
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Figure 11: A few results with short-term periods ,  and without short-term filter. 



Figure 12: Results with bicausal VM model for several age groups (mortality data age-stratified, 
vaccination data is all-ages).  is concentrated at ages 65+.


3.4 Europe 
I applied the bicausal VM model on 30 European countries using data from aggregators [Eur,Owi] 
in weeks 10-43. Countries include Austria, Belgium, Bulgaria, Croatia, Czechia, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Liechtenstein, Lithuania, 
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, 
Sweden, Switzerland and United Kingdom.

	 Figure 13 shows results for The Netherlands, with data from the same national source used in 
previous sections and the aggregation sources. Clearly, aggregator data has been processed. 
This may involve smoothing or small accidental/deliberate data shifts in time, e.g. to align data 
sets or optimize visualization for their online services. In this study, however, it negatively affects 
the significance of measurements.




Figure 13: Results with bicausal VM model for The Netherlands, weeks 10-43, data from three 
different sources [Src,Eur,Owi]. 

Figure 14 shows results for a selection of European countries. Clearly, the individual results lack  
significance. 

ΔT = 2 ΔT = 16

VFR
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Figure 14: Results for several individual countries, weeks 10-43 (data from [Eur], UK data was 
available only at [Owi]). 

Significant results are obtained when data from all 30 countries are combined. Table 3 shows 
results for , with/without relaxation of prior expectations. Figure 15 shows a result with 

: all  are significantly different from zero, and all  are not, evidence for a 
significant mortality effect caused by vaccination, not involving a confounder. In absence of any 
prior expectation, a  of 0.35% ±0.10% is obtained according to Table 3 in the first 3 weeks.


Table 3:  and ( ) of all countries combined, at , per data source, with 
and without prior model.


ΔT = 3
ΔT = 5 FV→M FM→V

VFR

Data source [Eur] Data source [Owi]

0.26±0.08% (99.9%) 0.01±0.03% (59%)

0.35±0.10% (99.98%) 0.01±0.03% (60%)

Prior model variance σV→M

10−3

∞

VFR Pr{VFR ≥ 0} ΔT = 3
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Figure 15: Results for 30 European countries combined, weeks 10-43. 

4 Conclusions and discussion 
This report presents a causal model of infections, vaccinations and mortality (IVM), with main goal 
to estimate Vaccine Fatality Ratio  on the short-term of a few weeks. The model has few to 
zero prior model parameters, which are unbiased in terms of causal effect direction (from A to B or 
vice versa), sign (enforcing or supression, protection or damage), and even strength (strong or 
weak). Bayesian probabilities are used to quantify all interactions. Five confounders are explicitly 
taken into account, plus all long-term confounding using a filter that extracts short-term events  
only. A simpeler VM model without infections and only one “bicausal” interaction is shown to 
provide essentially the same results, indicating that during the analysis period, infections did not 
play a significant confounding role. 

	 Evidence was found of a causal effect from vaccination to mortality during booster campaigns 
in the Netherlands (2022 weeks 9-50) and Europe (weeks 10-43 due to data limtations). A positive 
Vaccine Fatality Ratio  was found within 2-3 weeks after vaccination of 0.13% 
(0.05%-0.21%, 95% CI) for The Netherlands, and 0.35% (0.05%-0.55%) for Europe. These s 
transcend the  of covid substantially [Io2].

	 The high  on the short-term was found to be partially compensated a few weeks later. A 
single, partially age-stratified experiment did indicate that vaccine-induced mortality focuses on 
the 65+ age group. This supports the mechanism of very frail elderly whose death is accelerated 
1-2 weeks due to vaccination, associated with a low loss of QALYs (Quality Adjusted Life Years). If 
present, this mechanism is only partial;  over 5 weeks still has 68-80% probability of being 
net positive.

	 Additionally, experiments using the IVM model with sewer-viral-particle data in The Netherlands 
suggested vaccination induces covid-infections and/or reactivates latent viral reservoirs, at a rate 
scaled to equivalent-PCR-infections per vaccination of 0.50 (0.08-0.92). Recent research reported 
that infections strongly correlate with vaccinations [Shr].

	 This study was limited in many ways. The available source data was not case-based but 
national weekly overall rates. The short-term filter approach is insensitive to all long-term effects. 
Significance levels were very low for many measurements. The method used is very sensitive for 
preprocessing that data aggregators may apply, e.g. smoothing or small accidental/deliberate 
data shifts in time, e.g. to align data sets or optimize visualization. Infection data was of low 
reliability, by nature. Finally, my method has all kinds of flaws unknown to me, to all [Bre]. Despite 
all this:

	 The evidence of a causal relationship from vaccination to infections and mortality is a very 
strong alarm signal to stop the current mass vaccination programs.
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