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Abstract  

In this thesis, we describe a system that performs online transformation estimation between 

pre-calibrated stereo cameras. This allows the stereo cameras to be moved around and 

automatically re-calibrated without the use of a calibration object. This also allows the set-up to deal 

with ad-hoc camera relocation and to recover from accidental nudges that invalidate the extrinsic 

(external to the stereo camera) calibration. The obtained transformations can for example be used 

in virtual view rendering for 3D Video. 

The relative positions and orientations of the stereo cameras are obtained using sparse point 

correspondences found in different views of the scene. For each stereo camera, 3D coordinates of 

salient scene points are triangulated and their image feature descriptors are used to locate the same 

points in the views of other stereo cameras. The salient point descriptors SIFT, ASIFT, SURF and FAST 

are compared for this purpose, together with two different error measures to see which selects the 

best transformation. 

Two strategies are proposed and evaluated to deal with three or more stereo cameras. Given 

enough salient image points, the proposed solution accurately finds the transformation between 

stereo camera pairs with a reprojection error less than 1 pixel. Additionally we use the obtained 

transformations to perform virtual view rendering and evaluate the perceptual quality. 
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1. Introduction 

In this introductory chapter the subject of this thesis is put into context. The first section explains 

the background and purpose of the conducted research. In section 1.2 a problem description is 

formalized and in 1.3 some elementary and more advanced concepts, helpful for greater 

understanding of this work, are introduced.   

Related work is discussed in section 1.4 and subsequently the contribution of this research to 

the scientific community is explained in 1.5. Finally section 1.6 provides a disposition of the 

remainder of the work. 

1.1. Background 

With recent blockbusters such as Avatar and Alice in Wonderland, 3D video is gaining more and 

more momentum. At the same time 3D-ready television sets slowly become available on the 

consumer market. Most of the current 3D video material is actually stereoscopic; a different image 

for each eye. More advanced 3D video and 3D video equipment can provide an even stronger 

illusion by presenting a view based on the position of the viewer. If the viewer moves, the 

perspective of the 3D video changes as well. In for example the Philips 3D TV [1], this is achieved by 

dividing the area in front of the TV in different viewing cones, where each cone receives a different 

image. Other approaches actually track the physical position of the eyes [2] to adjust the viewing 

perspective. 

One way to obtain this type of multi-view 3D video, is to place several cameras at fixed positions 

around the scene and use their images to interpolate the views from other positions. We refer to 

this as virtual view rendering. Knowing the relative position and orientation of cameras with respect 

to each other enables to extract the scene / geometry by relating all camera images. The scene 

model can subsequently be used to render new images from virtual cameras at arbitrary positions. 

The accuracy of the found transformations directly affects the quality of the virtual views. 

Using stereo cameras instead of ordinary cameras has several advantages. Since the baseline 

between the two individual views of each stereo camera is known (in meters), depth triangulation is 

relatively easy and all scene coordinates and transformations can be determined in meters, which is 

not trivial when using a single camera setup. 
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1.2. Problem Description 

The TU Delft 3D Studio consists of four stereo cameras which can be used for recording, each 

capturing a scene from a different angle. Prior to recording, the stereo cameras must be calibrated. 

Calibration consist of determining several parameters describing the set-up, such as the lens 

distortion of each camera and also the relative positions and orientations between each stereo 

camera. Current methods to perform this calibration require a user to step into the recording scene 

and hold up a calibration plate. Several images must be taken with the plate in different orientations 

each time. A software program then determines all the calibration parameters from the images. This 

process can easily take up in excess of 30 minutes and is required each time a stereo camera is 

moved even a centimeter. 

The goal of this project is to investigate and develop a system which can quickly re-calibrate 

whenever there is any, planned or unplanned, camera movement. The user interaction should be 

minimal, no calibration object should be required and the scene should not be disturbed. 

1.3. General Concepts 

1.3.1. Image Processing  

More advanced readers can safely skip this section. 

A digital image typically consist of a rectangular grid of pixels. The size of the grid determines 

the resolution at which the (continuous) 3D scene is projected onto the 2D image plane. Each pixel 

(‘picture element’) stores information about the scene, usually either binary (0 or 1), grayscale or 

color. Grayscale is represented as a single intensity value. Color is most commonly represented as 

three separate intensities, one for each RGB component (red, green, blue).  

A digital image can be obtained using a digital camera, which consists of a CMOS or CCD chip 

and a lens. The lens bundles the light on the chip, which consists of a grid of light-measuring sensors 

(photodiode). Typically one photodiode supplies the intensity value for one pixel. Color images are 

obtained by filtering the incident light based on wavelength, such that each photodiode measures 

only one color component. 

In image processing an image is processed and the output is an (improved) image, or a set of 

features describing (part of) the image. A feature is any type of distinct information. Low-level 

features can be the pixel intensities themselves, while more high-level features describe structures 
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in the image, for example edges, corners or entire objects. If a single entity (a point, an object) is 

described using multiple features, the combined features are called a feature vector or descriptor. 

1.3.2. Coordinate Systems  

A single point can be represented relative to several different coordinate systems. Calibration is 

required to determine the conversion from one coordinate system to another. The following 

coordinate systems are relevant [3]: 

 IMage Coordinate System (IMCS)  

This coordinate system is relative to the image and the coordinates are the actual (2D) pixel 

coordinates. The coordinates of a point in the image are given by:  

               

 Camera Coordinate System (CCS)  

This coordinate system is relative to each (individual) camera. The x-y plane is parallel to the 

image plane, with origin at the projection center and the z-axis along the optical axis. The 

coordinates of a 3D point in CCS is given by:  

              

 World Coordinate System (WCS)  

This coordinate system is a common coordinate system for all cameras. All other coordinate 

systems can be defined relative to it. The CCS of one of the cameras can be chosen as the 

World Coordinate System, or the WCS can be chosen relative to a real-world coordinate 

system, for example using GPS. A point in WCS is given by:  

              

1.3.3. Camera Calibration 

Pinhole Camera Model 

The Pinhole Camera Model is a model for how a 3D point is 

projected onto the image plane assuming the camera has no 

lenses and the camera aperture is a single point. The model 

allows a simple mapping from 3D scene to 2D image, but is only 

an approximation for real cameras, as effects like lens blurring 
 

Figure 1 – Pinhole Camera Model 
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and distortion are not modeled. Depending on the quality of the camera and the precision required 

by the application, the model can be used directly as a description of the 3D to 2D (camera/world to 

image coordinates) mapping, otherwise the model can be combined with information about the lens 

distortion etc to give a meaningful conversion. 

Camera Parameters 

There are a large number of parameters that model the imaging process of a camera. These 

parameters are required to make transformations between the image coordinate system and the 

world coordinate system. When working with stereo cameras, some additional parameters need to 

be estimated. We divide the parameters in the following categories:  

 Intrinsic  (Image to Camera Coordinates)  

o Focal Length ( )  

o Pixel Aspect Ratio (  ,   ) 

o Principal Point (     )  

 Lens Distortion Coefficients  

o Radial ( 3,  5)  

o De-centering ( 1, 2)  

o Thin Prim ( 1, 2)  

 Extrinsic (Camera to World Coordinates) 

o Rotation (α  β  γ)  

o Translation (x, y, z)  

Intrinsic Parameters  

Parameters internal to the camera are called intrinsic parameters, and are sufficient to model a 

perfect pinhole camera. Focal length (f) is the distance between the focal point and the image plane. 

The aspect ratio of the physical dimensions of a pixel (  /  ) is also required, as most cameras do 

not have square pixels. The principal point (     ) is the center of the projection in the image 

plane, ideally the centermost pixel in the image.  

Lens Distortion Coefficients  

Additionally several non-linear components related to lens distortion and skew can be modeled 

if highly accurate calibration is required. The radial distortion (k3, k5, sometimes as: k1, k2) is the 

most significant distortion component, and  3 usually accounts for about 90% of the total distortion 

already [3]. This distortion is caused by the fact that objects at different angular distance from the 

lens axis undergo different magnifications. The de-centering distortion is due to the fact that the 
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optical centers of multiple lenses are not correctly aligned 

with the center of the camera and the thin prim distortion 

arises from imperfections in lens design and 

manufacturing as well as the camera assembly. In this 

work we deal only with k3 and k5. 

Stereo-Intrinsic / Stereo-Extrinsic Parameters 

Extrinsic parameters describe the transformation 

between camera and world coordinates, in other words translation and rotation. For the purpose of 

this thesis, we consider the extrinsic parameters within a stereo camera, intrinsic to that stereo 

camera. So stereo-intrinsic parameters consist of the intrinsic parameters (focal length, principal 

point, etc) of both individual cameras and the extrinsic stereo baseline (given by translation and 

rotation) between them. The parameters extrinsic to the entire stereo camera rig, so its position and 

orientation relative to the world and other stereo cameras, are referred to as stereo-extrinsic. 

Whenever a stereo camera is moved, the stereo-extrinsic parameters change while the stereo-

intrinsic parameters typically do not.  

1.3.4. Epipolar Geometry 

When two cameras, that can be modeled using the pinhole camera model, take an image of a 3D 

scene from a different viewpoint, there is a geometric relationship between the location and 

orientation of the camera, the captured 3D points and their corresponding projections on the 2D 

images.  

This geometric relationship allows calculating the coordinates of the 3D points given the 2D 

coordinates in the image plus the transformation between the cameras. This can be used to perform 

depth triangulation for point correspondences between two cameras, if their extrinsic calibration is 

known.  

Alternatively, the geometric relationship also allows calculating the transformation between the 

cameras given the 3D coordinates and 2D coordinates. This property can be used to perform 

calibration between stereo camera pairs using a known-geometry object.  

Epipolar line 

 
Figure 2 – Image with lens distortion effects 

removed. 
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Another useful property in epipolar geometry is called the epipolar line. For a given point in the 

image, its corresponding point in another view must lie along an epipolar line (see Figure 3). This 

property increases the chance of finding the correct correspondence and reduces the computational 

cost, as less points have to be considered. Finding 

a corresponding point is important in both 

triangulation (see next section) and depth 

selection in virtual view rendering.  

Triangulation 

Triangulation can be used to calculate the 

depth of a point found in two (or more) views, 

assuming the epipolar geometry between the two 

cameras is known. If the same point    in WCS is 

seen from two cameras, and this correspondence 

is found in terms of pixel coordinates, the depth of the point can be calculated. In the case of a 

stereo camera, the transformation between the two cameras is ideally a simple translation in one 

direction (the baseline distance). A ray from the focal point of one camera through the projection of 

   in the image plane (reverse to the rays of light) will intersect with a similar ray from the second 

camera at the depth at which the point    is located, as can be seen in the figure below. Together 

with the baseline, these two rays form a triangle, hence the name triangulation. In set-up used in 

this work, the extrinsic parameters are known in meters, and thus the depth can be triangulated in 

meters as well.  

 
Figure 4 (Left) An image correspondence between (red X) the left and right view of a stereo camera is found.  

(Right) For each individual camera a ray is traced from the camera origin through the image point. For a valid 

correspondence, the two rays will (nearly) intersect and the 3D coordinate can be derived. 

 
Figure 3 – Epipolar geometry and lines. For a point XL 

in the left view, any correspondence in the right 

view must lie on the red line, which is the projection 

of the line from OL through XL. 
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1.4. Related Work 

There are two main approaches towards camera calibration. In the first approach a calibration 

object with known geometry, for example a plate with a checkerboard pattern, is captured by all 

cameras and camera parameters are computed such that they are consistent with both the known 

geometry and the image projections of the object. This typically results in a highly accurate 

calibration [4-6]. A disadvantage of this approach is the required manual interaction (placing a 

calibration object in the scene, usually in different orientations), which also means the normal 

recording, if any, must be interrupted.  

The second approach aims to overcome these problems by performing calibration using only the 

scene information available in the images taken by the cameras. This approach is commonly referred 

to as self-calibration, or online calibration. For many applications this self-calibration is implemented 

as a Structure from Motion (SfM) approach [7], which simultaneously finds the 3D scene structure 

and all camera parameters by analyzing the motion of objects across views and/or over time. Many 

SfM approaches use (sparse) bundle adjustment [8], which takes image point correspondences as 

input and refines the total reprojection error, using the Levenberg-Marquardt algorithm. Any wrong 

point correspondences should be removed beforehand during preprocessing. 

Often it is more efficient to perform only a partial calibration in systems that require periodic re-

calibration. For example, in [9] the intrinsic parameters are supposed to be known a priori and in 

[10,11], specifically aimed at stereo cameras in distributed 3D visual sensor network, the stereo-

intrinsic parameters are assumed known and fixed, leaving only the stereo-extrinsic parameters to 

be estimated. In [11] the focus lies mostly on the network protocols and although their approach is 

based on self-calibration, they require the use of a calibration target (object producing many unique 

image points) to deal with arbitrary scenes.  
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1.5. Contribution 

The contribution of this work lies in the comparison and combination of existing techniques with 

the purpose of creating a self-calibration system for the TU Delft 3D studio. Specifically four different 

salient image point algorithms have been compared and two different error criteria have been 

looked at. Note that although the approach in this work is not based on bundle adjustment, many of 

the preprocessing steps and comparisons are also relevant for bundle adjustment (SfM) approaches, 

as bundle adjustment is just a final refinement step which can be used with different salient image 

point algorithms and outlier strategies. 

Additionally an existing virtual view rendering algorithm has been implemented on graphical 

processing hardware, resulting in a significant speed increase. 

1.6. Disposition 

In chapter 2 some background information on the setup and required preliminary steps are 

discussed. In chapter 3 the details of the system are explained and the various algorithms are 

introduced. Chapter 4 gives the choice of various parameters, evaluation of algorithms and the 

overall performance of the system. Chapter 5 discusses a different subject, namely a Virtual View 

Rendering algorithm and its implementation in OpenCL, which was used as an evaluation method. 

Finally in chapter 6 a brief conclusion is drawn while in chapter 7 recommendations for future work 

are given. 
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2. Preliminaries  

This chapter explains the specific camera set-up used in this work and also the stereo-intrinsic 

pre-calibration step required. 

2.1. Camera Set-Up   

Our 3D Studio consists of stereo cameras (see Figure 5) each consisting of two FireWire 

AlliedVisionTec Marlin F-046C  [12] cameras bolted on a rigid aluminum frame, which in turn is 

mounted on an ordinary camera tripod. The cameras are connected with a PC through a FireWire 

hub mounted on top of the cameras and provide 640x480 images. The stereo baseline is adjustable, 

but was fixed at 10.4cm for all experiments. 

 
Figure 5 – Ordinary stereo camera setup with four stereo cameras positioned around a scene. 

2.2. Pre-Calibration 

The proposed system works with pre-calibrated stereo cameras. We make the assumption that 

moving stereo cameras does not change the stereo-intrinsic parameters, given that the cameras are 

mounted tightly on a rigid frame. Therefore a stereo camera only has to be calibrated once. The 

obtained calibration data should remain valid as long as the stereo camera rig is not modified (such 
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as changing the focal length or stereo baseline). In practice the stereo-intrinsic calibration may also 

become invalid due to external factors such as temperature changes, so we recalibrate periodically. 

All pre-calibration data for experiments in this paper was obtained with a manual calibration 

technique [6] using a known-geometry calibration plate (see for example Figure 6).  

 
Figure 6 – Calibration plate dubbed ‘Grid-‘ 

The calibration is performed by placing the calibration plate in the scene such that two or more 

cameras have a good view of the plate. After taking an image (with all cameras), an algorithm then 

locates the dots on the plate in each view.  For views where all dots are found, the correspondences 

can be used to calibrate those cameras relative to each other. For views where the dots were not 

correctly located, additional images are required. To make the calibration more accurate, the 

process is repeated several times with the calibration plate each time in different orientations. 
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3. Approach  

In this chapter the details of the proposed approach are explained. The goal is to determine the 

transformations that describe the relative positions and orientations of the stereo cameras capturing 

a single scene. To perform this task, the literature was studied for applicable techniques and existing 

algorithms (see also previous work [13]). Using this information a new approach was formulated, 

which can be summarized as follows (see Figure 7): 

 Detect salient image points in both views of all stereo cameras 

 For each stereo camera, establish image point correspondences between the stereo views and 

triangulate the 3D coordinates of each correspondence 

 Match 3D points between a pair of stereo cameras using the original image point descriptors 

 For a selected subset of stereo camera pairs, estimate transformation from RANSAC-selected 

(3D) correspondences 

 Resolve transformation between any stereo camera pair desired 

Each of these steps will be discussed in detail in subsequent sections and for some steps several 

alternative algorithms are explored and compared as part of this work. 

 
Figure 7 – Overview of the OTESC algorithm 
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3.1. Salient Image Points  

Each stereo camera simultaneously takes an image of the scene from each view, resulting in two 

images per stereo camera. The first step in OTESC is to find salient image points (sometimes referred 

to as critical points, or keypoints) that can be uniquely matched in these two images. Several 

algorithms exist for this purpose and most of them aim to fulfill three requirements: detection, 

description and matching procedure. In the detection step salient image points are identified (eg, 

corners, edge points, high contrast regions) and in the description step the detected salient points 

are described as feature vectors. Most algorithms then define a procedure describing how the 

salient points are to be matched using the feature vectors. OTESC acts as a framework and allows 

different salient image point algorithms to be used. Several promising algorithms were tested, what 

follows is a brief explanation of each. 

3.1.1. Salient Point Algorithms 

Four salient point algorithms are briefly introduced here. These algorithms have been pre-

selected for their desirable properties in terms of speed or accuracy. For a more detailed description 

see Appendix B or the original papers. 

SIFT 

SIFT [14,15] stands for Scale-Invariant Feature Transform and is an algorithm aimed at 

performing object recognition, by matching many local image features instead of using a few 

complex (for example geometric) features. 

SIFT selects and describes a salient point in the image if it is a local extrema in a Difference of 

Gaussians function on a small neighborhood around this pixel. The resulting description is invariant 

to translation, rotation and scale. 

SURF 

A relatively new interest point detector and descriptor is SURF, Speeded Up Robust Features 

[16], which is partly inspired by SIFT. This algorithm is relatively quick compared to SIFT, about 3 

times faster, and the authors claim it has similar or slightly better performance. In another 

comparison [17] it is also concluded that SURF outperforms SIFT when it comes to viewpoint 

changes, which is of course an important criterion. SURF does find fewer matches, and is slightly less 

invariant to illumination changes. 
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The normal version of SURF is invariant to translation, scaling and rotation. A version called U-

SURF (upright SURF) is only invariant to rotations up to 15°, but is faster than regular SURF. Since in 

most practical situations the view rotation is typically below 15°, it may be sufficient to use U-SURF 

for camera calibration. 

FAST 

FAST (Features from Accelerated Segment Test) is a corner detector [18,19] designed for use in 

real-time tracking systems. The detector performs a very simple test for each pixel p, by examining a 

circle of 16 pixels around the pixel. A corner is detected if at least n contiguous pixels are all above or 

all below the intensity of p by some threshold t. The specific variant (FAST-9, FAST-12) determines 

the value of n (eg 9, 12, etc). The descriptor used is typically the 16 pixel values, which can be 

matched after calculating the SSD (Sum of Squared Distances). 

ASIFT 

Methods like SIFT and SURF normalize the translation and rotation component and simulate the 

scale (zoom) through image pyramids to obtain an description invariant to these parameters and 

partially invariant to affine transformations. A recently proposed method ASIFT (Affine SIFT) [20,21] 

attempts to obtain a description fully invariant to affine transformations. The method simulates all 

image views obtainable by varying the latitude and longitude camera angles. Next the resulting 

views are compared using the normal SIFT algorithm.  

3.1.2. Selection 

Four main techniques have been introduced as salient image point detectors. Based on claims by 

the authors, FAST-9 shows most promise in terms of speed. In terms of robustness ASIFT is likely to 

perform best. A big disadvantage of FAST-9 is that is does not provide subpixel accuracy and is not 

scale or rotation invariant. SIFT is commonly used and SURF is partly inspired by SIFT, aimed at 

providing similar quality features in less time. Both descriptors are insensitive to scale and rotation 

(optional for SURF). Both are invariant to small affine transformations. ASIFT should provide better 

results than SIFT under large viewpoint changes, however it comes at an highly increased 

computational cost. 

The implementations used are [22] for SIFT, the OpenSURF library [23] for SURF. For FAST-9 the 

implementation by the original authors is used. For ASIFT the original Linux source by the authors 

was ported to Win32. All source code has been modified slightly to integrate with OTESC. The 

parameters were set to the author's recommended settings, except as otherwise noted. For example 
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for SURF the Upright-SURF variant was used. Upright-SURF is quicker, but only orientation invariant 

up to about 15 degree [16], which should be sufficient for our purpose. In section 4.3.2 a comparison 

between the algorithms, in terms of accuracy of the proposed solution, is given. 

3.2. Stereo-Intrinsic Matching  

For each stereo camera, salient point detection and description is applied on both views (  and 

 ) and sparse point correspondences are established between the two views. 

The four salient point algorithms can be used with a similar matching scheme; matching happens 

not based on the distance between two feature vectors, but on the ratio between the distance with 

the best and second-best match. If an image contains repeating patterns for example, there are 

many valid candidates and the matching would be ambiguous. The ratio ensures that the 

correspondence is only accepted if it is unique among all candidates. Formally the ratio is defined as 

follows: if the distance between two point descriptors        is given by        , a match between   

and    is only accepted if    is the best match (smallest distance), and the ratio with the second best 

match    is below a threshold  :  

        

       
   

(1)  

If an image contains repeating patterns for example, there are many valid candidates and the 

matching would be ambiguous. The ratio ensures that the correspondence    is only accepted if it is 

sufficiently unique among all candidates.  

To find matches, all descriptors in one image must be compared to all descriptors in the other 

image. As the complexity of this matching procedure is O(n2), the matching speed is typically 

improved by using a modified k-d tree algorithm to find nearest neighbors more efficiently [14]. 

Note that in the current implementation this optimization is not used for all salient point algorithms. 

Ideally, the corresponding image points        found                have originated from a 

single 3D scene point  . Since the stereo-intrinsic calibration parameters are known, it is possible to 

triangulate the 3D coordinates of   relative to the stereo camera. For both individual cameras, a 

(theoretical) ray is traced from the optic center through the image plane (at the image point 

coordinates), see also section 1.3.4. The rays should converge near scene point  . If the distance 

between the two rays at the point of closest convergence is above a threshold  , the 

correspondence        is discarded, as this would indicate that the coordinates of the two salient 

points were inaccurate, or did not originate from the same point  .  
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We associate point   with the salient point descriptors of both image points for further matching 

with other stereo cameras. After this stereo-intrinsic matching each stereo camera has a list of scene 

points with each two associated image descriptors      . 

3.2.1. Epipolar Constraints 

As noted in section 1.3.4 on epipolar geometry, when looking for a corresponding point in 

another view, the search area can be limited to a line. This constraint can be used in the matching 

phase to quickly eliminate wrong matches: for a point   in  , calculate its epipolar line   in view  . If 

the current point    under consideration is not on line  , the feature vectors do not have to be 

compared as this cannot be a valid match. Note that in OTESC this explicit check is not used, but it is 

implicitly performed during the triangulation step. 

3.3. Stereo-Extrinsic Matching  

For a pair of stereo cameras       the transformation between them is obtained by first 

establishing correspondences between the scene points. 

The matching, using the same matching algorithm as described in the previous section, is 

performed first using the left descriptor of each point, as follows: match(LA, LB). If less than 20 

matches are found in this matching step, all four combinations of the two associated  descriptors for 

each point: (match(LA, LB), match(LA, RB), etc) are done. This is repeated inversed because the 

matching is not symmetrical (eg, match(x, y)   match(y, x)). So points from   are matched with  , 

resulting in a total of eight matching runs. These eight runs typically result in 2 to 3 times more 

matches (after removing duplicates) than a single run. 

Scene points that have been matched are ideally the same world point seen from two different 

viewpoints. As the matching process is based on photometric consistencies, it will likely produce 

physically incorrect matches. Therefore the transformation estimation must be robust to outliers; 

see the next section. 

3.4. Transformation Estimation  

The (affine) transformation   between the two matching point clouds is calculated using the 

Absolute Orientation algorithm [24], see 3.4.1 for details. This algorithm requires a minimum of 

three 3D correspondences (however we assume a minimum of four in our implementation) and 

estimates the rotation and translation required to align the clouds, represented as: 
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(2)  

where   is a 3x3 rotation matrix and   is a translation vector. The transformation   is estimated 

such that for each correspondence       , ideally:  

             (3)  

with   and    in homogeneous coordinates. 

To cope with noise and incorrect matches, a RANSAC [25] scheme is employed, see 3.4.3 for a 

background on RANSAC. During each RANSAC iteration a random subset of four correspondences is 

selected and the transformation   is estimated. Remaining correspondences        are considered 

in-consensus, and added to the consensus set  , if their correspondence is adequately modeled by 

the found transformation. This is formalized in section 3.4.2. If   consists of at least 40% of all 

correspondences, or at least 20, the error on all inliers of the found transformation is evaluated (see 

section 3.4.4). The entire process is repeated a fixed number of iterations (see 4.4), and after each 

iteration the best transformation is kept. It is possible that no transformation is found at all, because 

not enough correspondences are found or in-consensus. 

3.4.1. Absolute Orientation 

Absolute Orientation is an algorithm which finds the relationship between two coordinate 

systems by using corresponding coordinates from both systems [24]. We use a closed-form solution 

to the least-squares problem obtained using unit quaternions, which requires at least 3 

correspondences. Alternative approaches to the Absolute Orientation problem use orthonormal 

matrices [26], SVD or dual quaternions. As described in [27] all approaches perform similar in terms 

of accuracy. The approach using unit quaternions is used because it is considered most elegant. 

Given two sets (   ), each containing   coordinates (                    and                     ),  

the approach works by first calculating the centroid    (average coordinate) of both the left and right 

coordinate set. The centroid is subsequently used as the new origin of each set; all coordinates are 

redefined (same for  ): 
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              (4)  

Next the difference in scale can be obtained from the resulting coordinate sets, however we 

assume equal scale (scale=1). This assumption is valid from a physical point of view; all 3D 

coordinates were obtained in meters, and are thus in the same scale (unit). This also means we now 

know the translation, as this is simply the difference between the left and right centroid. 

The main computational step is determining the rotation between the two point clouds. A 

matrix   is constructed: 

   

 
 
 
 
 
                                 

                                 

                                  

                                   
 
 
 
 

 (5)  

with all variants    ,    , … ,    calculated (note:             ) as follows: 

                  
 

   

   
                            

 
   

   
       (6)  

The eigenvector of   corresponding to its most positive eigenvalue is a unit quaternion 

representing the required rotation. This quaternion is converted to a 3x3 rotation matrix and 

combined with the previously obtained translation vector to form the transformation matrix. 

3.4.2. Consensus Criterion  

To determine if a correspondence is correctly modeled by the transformation   under 

consideration, an error measure is calculated. Two different measures were evaluated; the 3D Error 

and the Reprojection Error: 

 3D Error  

The 3D Error is given by the (3D) Euclidean distance between    and its estimate   , thus:  

                 (7)  

 Reprojection Error 

The Reprojection Error is given by the (2D) Euclidean pixel distance between the projections of 

   and estimate    on the image plane: 
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                            (8)  

where        projects the 3D point onto the right-most image plane of the stereo camera 

associated with   . Since the stereo-intrinsic calibration parameters are known, this projection 

can be directly calculated. 

To use these error measures in the RANSAC scheme, a threshold is applied of respectively   

pixels for the Reprojection Error and   meters for the 3D Error. Correspondences with an error below 

this threshold are regarded as in-consensus with the current transformation. See section 4.3.1 for a 

performance comparison between the two error measures, and the chosen thresholds. 

3.4.3. RANSAC 

RANSAC (RANdom SAmple Consensus) is a generic method to find a model in observed data 

which is corrupted by a large amount of outliers, first described in [25]. The (general) strategy 

employed by RANSAC works as follows. For each iteration a random subset (of size n) is chosen from 

the dataset. This subset is regarded as hypothetical inliers. The model is fitted on this subset, using a 

problem-specific fitting method, for example least squares. The data not in the subset is then 

evaluated and added to the hypothetical inliers if they are consistent with the model (threshold t), 

forming the consensus set. If the total number of hypothetical inliers is large enough (threshold d), 

the model is considered good. The model is improved by refitting the model on the consensus set. 

The model with most points in the consensus set is stored as the best model. After a fixed number of 

iterations (k) the best model is returned.  

Variants 

There are many variations on RANSAC attempting to improve some of its performance 

characteristics [28,29]. For example MSAC [30] uses a different criterion to determine which 

consensus set is best. The original RANSAC paper used a criterion aimed at minimizing the cost, 

namely the number of outliers; so inherently the more inliers the better the model. The actual 

fitness of the inliers was not taken into account. In MSAC the outliers are still regarded as a constant 

cost (the threshold value t), but the cost of the inliers is their error compared to the model (between 

0 and t). This very simple change makes the evaluation of models much more robust [30].  

Variant Used 

In this specific case, the model to be found is the transformation that aligns the two point 

clouds. Outliers here are incorrect correspondences; 3D coordinates which do not actually describe 
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the same scene point. The method is iterative and non-deterministic, meaning it is not guaranteed 

to produce correct results due to its random nature. RANSAC does not find the model itself, it 

merely provides a strategy to select the best subset of data, only inliers and not the outliers, to 

estimate the model from. Estimating the model from the subset is done by the Absolute Orientation 

approach described in the previous section. Although the Absolute Orientation algorithm can deal 

with the small alignment errors of correct correspondences, the (much larger) errors introduced by 

outliers would corrupt the estimation of the model.   

Our RANSAC strategy uses a cost function similar to MSAC, except that the cost of outliers is not 

counted at all. The number of outliers is irrelevant for our purpose as long as there are enough 

inliers, so there is just a threshold on the number of inliers required. Also contrary to the original 

RANSAC algorithm, the model is not re-estimated from the entire consensus set   when using the 

Reprojection Error. Instead the transformation found from the original four points is kept, as this 

gives better results. An explanation could be that the Absolute Orientation algorithm, due to its 

nature, minimizes the 3D Error, not the Reprojection Error used as evaluation. When using the 3D 

Error, re-estimation does lead to a smaller average error, which is expected given the design of the 

algorithm. 

3.4.4. Transformation Error  

The total transformation error is given by averaging the consensus error (either 3D or 

Reprojection Error) over all correspondences in the consensus set  . This error gives an indication of 

the average error the transformation makes on correct correspondences. We use this error as the 

fitness measure for RANSAC. 

3.5. Multi Camera Setup 

The procedures described above determine, between a pair of stereo cameras       , the 

transformation        . We will now extend this procedure for set-ups with more than two stereo 

cameras. Let   be the set of all stereo cameras, so         . Let         be the number of 

correspondences found between   and   . The goal is to find the position and orientation of each   

relative to a common origin   (one of the stereo cameras,      ). We will differentiate between 

direct transformation estimation (DTE), which is the technique described in the previous sections, 

and indirect transformation estimation (ITE), which is described in this section. 
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A reasonably safe assumption is that if two views have more overlap, more correspondences can 

be found and our approach is better at finding an accurate transformation estimation. As perhaps 

not all pairs        have overlapping views, and some pairs have more overlap than others, there are 

different strategies possible in finding all transformations. Since no knowledge is yet available about 

the relative positions and orientations of the stereo cameras, the number of matches         is used 

as an indicator of view overlap instead. 

We will discuss two simple strategies to deal with multi camera set-ups (see also Figure 8). In 

section 4.5 we will give a numerical comparison between the two.  

 
Figure 8 – An example multi (stereo) camera setup with 3 stereo cameras (A, B, C) with their respective area of overlap 

(eg. AB is the area which both A and B see). We assume in this image that the number of correspondences found is 

directly correlated to the view overlap. The origin is chosen to be B. In the Minimal Set approach, the transformation 

[B,C] is not estimated directly, but calculated from the transformations [A,B] and [A,C]. In the Origin approach [B,A] and 

[B,C] are calculated directly. 

3.5.1. Minimal Set 

Given three stereo cameras {1,2,3}, if the transformation between {1;2} and {2;3} is already 

known, the transformation between {1;3} can be deduced indirectly. We have implemented this 

approach as follows. All possible pairs        are evaluated in descending order of number of 

correspondences. A graph   is constructed with each stereo camera   as a vertex     . Whenever 

the transformation between a stereo camera pair        has been estimated, the edge              
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is added to  . Before performing DTE between each       , a breath-first search is performed on   

to see if there is a path that connects      and      . If such a path exists the DTE is skipped; the 

transformation can already be indirectly determined. The final step is to calculate the missing 

(indirect) transformations between the origin   and each remaining stereo camera   (   ) by 

multiplying the previously found transformation matrices along the (shortest) path between      

and      (ITE). 

3.5.2. Origin 

Instead of finding the minimal set of most 'overlapping' pairs, this approach performs a DTE 

between the chosen   and any stereo camera          , regardless of the number of 

correspondences between them. If DTE fails for an  , an ITE is performed through a stereo camera    

for which         is already known. The stereo camera    is selected by: 

       
  

          (9)  

In this approach the common origin  , if not given, is chosen by finding the stereo camera   

from  , for which holds:  

       
 

    
          

           (10)  

In words, the minimum number of correspondences a stereo camera shares with any other 

stereo camera should be the highest of all stereo cameras. This should select the stereo camera 

which is most 'central' and has enough correspondences with any other stereo camera for a 

successful DTE. If multiple stereo cameras meet this criterion, the stereo camera with most 

correspondences overall is chosen.  
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4. Parameter Choices and Evaluation 

4.1. Evaluation Measure 

The stereo cameras were pre-calibrated using the technique described in section 2.2. The pre-

calibration also provides a ground-truth transformation (   ) between the stereo cameras, which is 

used to evaluate our approach. The main evaluation criterion is calculated as follows; for each        

in the inlier set   selected by the RANSAC scheme, calculate the average difference: 

 

   
 

   
                               

   

        

 

(11)  

where        is the transformation found by our approach and        is the pixel projection 

described in section 3.4.1. Note that the point    is not required for this error measure. We will refer 

to this error measure as the ground truth (reprojection) error, given in pixels. 

As will be shown in the final results, the relative position and orientation sometimes deviate 

significantly from the ground-truth transformation. It should be noted that both the OTESC 

transformation and the ground-truth transformation are not necessarily physically correct; they are 

geared towards minimizing a reprojection error. Therefore the deviation in translation and rotation 

is purely given for illustration purposes. If a transformation   is represented as a translation 

component   and the rotation   in Euler angles (     ), then the translation error is given by the 

Euclidean Distance: 

                

 

(12)  

and the rotation error is given by:  

                                         (13)  

4.1.1. Normalized Ground Truth Reprojection Error 

When combining the ground truth error from multiple image sets, for example when choosing 

optimal parameter values, we want to normalize the error measures to prevent an image set with a 

larger error to dominate the combined measure. Also due to the non-deterministic nature of 

RANSAC we must take into account the variance of the error. Therefore we introduce the following 

normalized measure: 
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(14)  

where     is a distribution of ground truth errors (multiple   ) for a given image set   and set of 

parameters and n is the number of different parameter values checked. Note that the value 

   
      

 is the expected upper bound for the error in 97.8% of the cases (assuming normal 

distribution). The average and standard deviation were obtained over 20 to 50 samples (depending 

on computational costs). The normalization scales all error measures    in the range [0..1], which 

allows them to be averaged over different image sets to analyze which parameter value gives the 

lowest average error. This average error per parameter set may give a unrealistic view if only a small 

number of images contribute to it and for the other images no solution (thus no error) was found at 

all. To take this into account, a weighted average is calculated as follows:  

 
    
      

    
    

 
 

(15)  

where k is the number of images that contributed to the normalized error. 

4.2. Parameters 

Four salient point algorithms (SIFT, SURF, ASIFT, FAST) are compared based on their 

performance in the OTESC system. To make the comparison as fair as possible, several OTESC 

parameters have to be adjusted specifically for each algorithm. Note that the parameters internal to 

the algorithm, unless mentioned below, are kept at the authors recommended values. 

For each of the salient point algorithms the various parameters have to be chosen. The following 

parameters are tuned: 

 Stereo Triangulation Threshold 

 Stereo Matching Ratio 

 Multi Matching Ratio 

 RANSAC error measure threshold  

o Reprojection Error Threshold 

o 3D Error Threshold 

Since any dependencies between the parameters are mostly unknown, ideally the resulting error 

on all combinations of parameter values are calculated. Unfortunately this is computationally 

infeasible, so instead some assumptions on independency are made. Also other parameters, such as 
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the number of RANSAC iterations, are kept fixed and are tweaked separately since they are 

(assumed) independent on the actual algorithm used (although depend on the number of matches 

found). For all parameters there is a positive correlation between its value and the resulting final 

error, so lower parameter values result in lower errors. However if the parameter value is set too 

low, the chance of finding no solution at all greatly increases. 

Stereo Triangulation Threshold 

This parameter is used as a threshold when triangulating a stereo correspondence into a 3D 

coordinate. If the distance between the rays exceed this threshold at the point of their closest 

convergence, the correspondence is discarded. 

Stereo Matching Ratio 

The stereo matching ratio is a parameter found in the matching scheme of all four salient point 

algorithms. In OTESC it is used within the stereo camera. The ratio describes the acceptance 

threshold when the first and second best match are close to each other. A higher ratio means more 

matches are accepted. Although the respective authors of the salient point algorithms provide a 

recommended setting for this matching ratio, it was tuned specifically for this system. 

Multi Matching Ratio 

In the second matching step, between stereo cameras, a different ratio is used. Again, a higher 

ratio means more matches are accepted. See Figure 9 for a comparison different matching ratios 

(both stereo and multi) for FAST. 
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Figure 9 – Multivariate analysis of the Stereo and Multi Match Ratios. The color (see legend) indicates the average 

normalized reprojection error. Images for which no solution was found were given a fixed (normalized) reprojection 

error of 2.0. 

RANSAC Reprojection Error Threshold 

If as RANSAC consensus criterion the Reprojection Error is used, a specific threshold in pixels is 

required. See Figure 10 for the evaluation for SIFT. 

 
Figure 10 
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RANSAC 3D Error Threshold 

If the 3D Error is used as the RANSAC consensus criterion a threshold in meters must be used. 

See Figure 11 for the evaluation of different threshold values for SURF. 

 
Figure 11 

Final Parameters 

 SIFT SURF FAST ASIFT 

Triangulation Threshold 2 mm 2 mm 1 mm 2 mm 

Stereo Matching Ratio 0.5 0.65 0.2 0.6 

Multi Matching Ratio 0.4 0.65 0.3 0.7 

Reprojection Error Threshold 1.4 px 2.125 px 4 px 1.625 px 

3D Error Threshold 0.5 mm 0.2 mm 0.5 mm 0.5 mm 

Table 1 – Tuned parameters for the different salient point algorithms 

4.2.1. Multi Descriptor Matching 

As described in section 3.3, in case of few correspondences between 3D points, additional 

matching steps are performed to increase the number of matches. This may increase the chance of 

finding a solution, see section 4.3. 
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4.2.2. Threshold Relaxation 

A lower RANSAC consensus threshold (Reprojection or 3D) typically leads to a lower final error. 

However with a lower threshold, the probability of finding no solution at all increases. To deal with 

this situation, a relaxation scheme is used. The thresholds listed in Table 1 are the initial thresholds.  

Should no transformation be found using this threshold  , the reprojection threshold is 

automatically relaxed by 1 px, at most 3 times. In other words, if   = 2 px provides no solution, the 

estimation is performed again with subsequently   = 3 px, 4 px, up to 5 px, until a solution is found. 

For the 3D Error the threshold is relaxed by doubling it each time (eg: subsequently 0.001, 0.002, 

0.004, 0.008). 

4.3. Comparison 

4.3.1. RANSAC Consensus Measure 

The two different consensus error measures are now compared on 14 different image sets (see 

Appendix A), both with and without threshold relaxation and multi-descriptor matching (denoted by 

the + symbol). The comparison is given per salient point algorithm. 

 
Figure 12 
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Figure 13 

 

 

 
Figure 14 
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Figure 15 

Although the Reprojection Error and the 3D Error measure both give a good indication of the 

fitness of a transformation for a given correspondence, it is clear that for SIFT, ASIFT and SURF the 

Reprojection Error measure gives better results. Also the addition of multi-descriptor matching and 

threshold relaxation improves both the error and the probability of finding a solution for these 

algorithms. Therefore for these algorithms ‘Reproj+’ is chosen as best configuration. 

For FAST the results look a bit different. The Average Normalized Error is lower for the 3D Error 

and the extra steps (multi-descriptor and threshold relaxation) provide no improvement in terms of 

the average normalized error. They still increase the percentage of image sets for which a solution is 

found, which is an important criterion. For this reason the configuration with the highest percentage 

of solutions found is chosen for FAST, which is also ‘Reproj+’. 

The fact the Reprojection Error seems to perform best is not unexpected. Effectively the 

Reprojection Error measure is a weighted version of the 3D Error, diminishing the effect of errors far 

away from the camera. This is a desirable property, since we expect the 3D coordinates of the 

correspondences at those locations to be less exact; there is simply less resolution. In fact, if we 

lower the triangulation threshold the results of using the 3D error seem to be better than using the 

Reprojection Error, however for many image sets no solution can be found. 

4.3.2. Salient Point Algorithms 

In Figure 16 the four salient point algorithms are compared each using the Reprojection Error as 

RANSAC criterion and with multi-descriptor matching and threshold relaxation for optimal results. 
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Figure 16 –  OTESC performance on thirteen image sets using four different salient point algorithms. 

In this graph it is not very clear which algorithms perform best. It is clear that no single algorithm 

performs best for all image sets. In Figure 17 the results have been normalized and averaged over all 

image sets for easier comparison. Based on these results it is clear that SIFT and ASIFT are most 

robust (find solution in most cases) and SIFT provides the lowest error, with respectively SURF and 

ASIFT taking second and third place. Based on this the overall best algorithm is SIFT, as it provides 

both a low error and most solutions. 
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Another experiment conducted to compare the salient point algorithm is determining their 

robustness to changes in viewpoint. A computer generated image set (MA) was created with views 

from 14 stereo cameras increasingly further away from the first stereo camera. Next the OTESC 

algorithm was applied between the first stereo camera and each of the other stereo cameras (1 and 

2, 1 and 3, 1 and 4, etc). The results, for each of the salient point algorithms, can be seen in Figure 

18. 

 
Figure 18 

It is clear that SIFT comes out strong again, with very consistent performance even under 

increasing viewpoint differences. ASIFT has similar performance but FAST and SURF perform much 

weaker.  

4.4. Number of RANSAC iterations 

To determine an optimal number of iterations for the RANSAC algorithm used in OTESC, several 

measurements have been performed. For several image sets and with a maximum of 200000 

RANSAC iterations, the results for up to 50000 iterations have been plotted in Figure 19. From these 

results it can be concluded that after around 10000 iterations the probability of finding a better 

model in the next iteration has decreased significantly (although the total probability of finding a 

better model (with infinite iterations) is still around 30%). Looking at the RANSAC consensus error, it 
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10000 iterations this ratio is 84%. Based on these observations the ideal number of RANSAC 

iterations lies somewhere between 10000 and 30000 iterations, depending on the trade-off 

between accuracy and time. 

 
Figure 19 – Several measurements and observation to give an idea of the optimum number of RANSAC iterations for 

OTESC. All data was obtained using 200000 maximum iterations over several image sets. (1) is the normalized histogram 

of iterations (binsize = 1000) at which a better model than the previous was found. (2) is 1 minus the cumulative of (2). 

(3) is the best error obtained in 200000 iterations divided by the errors obtained at the given intervals. 

4.5. Multi Camera Results 

Two different strategies for set-ups with more than two stereo cameras were suggested. In the 

ideal case, both perform     estimations for   stereo cameras. The goal is to find the position and 

orientation of each stereo camera relative to a common origin. The main difference between the 

two strategies is that with the Minimal Set strategy many transformations relative to the origin are 

calculated using ITE from few strong DTEs, however this may cause errors to propagate. For the  

Origin strategy they all have been calculated with DTE if possible, however potentially with very few 

correspondences. 

We take a very simple case to evaluate the two strategies. Given three stereo cameras {1,2,3}, 

assume {1} is designated as the origin and there are very little correspondences for pair {1,3} and 

many between the other two pairs. Transformation T(1,3) is required. It must be verified which is 
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more accurate: DTE from the few correspondences between {1,3} or ITE using {1,2} and {2,3} with 

many correspondences. 

In Table 2 the results from four multi-camera image sets (with each three stereo cameras used) 

are shown. These results give no clear indication which strategy is superior.  

Minimal Set 
 
Image Set MA MC ME MF 

Stereo Camera Pair {1-2} DTE DTE ITE DTE 

Stereo Camera Pair {1-3} ITE DTE DTE ITE 

Total Reprojection Error (px) 1,303 1,286 31,364 0,851 

  

Origin 
 
Image Set MA MC ME MF 

Stereo Camera Pair {1-2} DTE DTE ITE DTE 

Stereo Camera Pair {1-3} DTE DTE DTE DTE 

Total Reprojection Error (px) 0,68 1,26 31,41 1,05 

Table 2 – DTE and ITE choices for the two multi camera strategies for different image sets. Also the resulting total 

reprojection error (sum of two errors) is shown. For image set MA the Origin set achieves a better performance by using 

a DTE instead of a ITE. However for image set MF using DTE instead of ITE leads to a larger total error. For image sets MC 

and ME both strategies make the same choice (on ME a DTE fails for the Origin strategy, so an ITE must be used). 

A second experiment with two image sets with each 7 stereo cameras gives a clearer, although 

slightly ambiguous result. The origin is the left-most camera in the set, all cameras are facing the 

same direction (parallel) are at equal increments away from the origin. Effectively for the Minimal 

Set strategy all transformations between the origin and each stereo camera, except its direct 

neighbor, are calculated using ITE. With the Origin strategy all transformations are calculated using 

DTE.  

The results are in Figure 20 and clearly show that ITE is highly sensitive to error propagation in 

image set MA. The results for image set MF are similar for the largest distance, 120 units, although 

less pronounced. For the smaller distances between stereo cameras in set MF the result of ITE is 

comparable to DTE. In none of the cases ITE gives a clear advantage over DTE, so in general the 

Origin strategy is the safest choice, which will only use ITE if DTE has failed completely. More 

information is required to determine in which cases ITE is able to outperform DTE. 
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Figure 20 - Reprojection Error when using ITE or DTE to relate the origin to a stereo camera increasingly far away, for 

two image sets. As the camera is further away, more transformations from stereo cameras in between must be used to 

calculate the result, which can result in any errors to propagate. 

4.6. System Performance 

In the previous subsections the combination of SIFT and the Reprojection Error measure turned 

out to be the strongest combination and the best choice for our approach. Table 3 lists the results of 

our approach on several image sets and Table 4 gives some statistics for each set, such as the 

number of matches and processing time. A total of 13 image sets, each consisting of images from 

two stereo cameras, were selected to evaluate the proposed approach. Each image set has a 

different background and different foreground objects. Six image sets were computer generated, 

see Appendix A. 
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The distance and orientation between the stereo cameras varied, see Table 3 for an indication of 

the view overlap, in terms of the rough distance between the stereo cameras (specifically between 

the left view of both stereo cameras). For six of the thirteen images the reprojection error is smaller 

than 1 pixel, which is desirable for virtual view rendering. For the other sets the reprojection error is 

typically below 2.5 pixels, with set Y as the only exception. Note that the translation error is much 

larger than desired for some sets, while reasonably accurate (< 1cm) for other sets. As noted before, 

the found transformation is not wrong just because the translation error is very high. 

Image 

Set 

Distance Stereo 

Cameras (cm) 

Translation Error  

(cm) 

Rotation Error  

(degree) 

Reprojection Error  

(pixels) 

A 25 0,88 0,36 0,516 

F 25 7,55 4,15 0,435 

G 35 17,92 2,31 0,502 

I 30 10,22 2,12 1,498 

Y 55 3,87 1,64 3,395 

V 55 25,33 3,90 2,412 

ZA 45 1,04 1,38 1,039 

DC 110* 4,27 3,77 1,762 

DD 110* 0,80 1,35 0,890 

DE 60* 1,08 0,84 0,652 

DF 60* 1,48 1,63 2,339 

DH 60* N/A N/A N/A 

DI 60* 13,28 0,36 0,504 

Table 3 – Results of OTESC system (SIFT + Reprojection) on 13 image sets. The * denotes these image sets were 

computer generated; the mentioned distance is an indication. 

Image 

Set 

Matches stereo-

extrinsic (1) 

Consensus matches 

(2) 

CPU Time (sec) (3) 

A 41 18 3,28 

F 26 10 3,52 

G 30 20 4,81 

I 26 12 3,53 

Y 32 12 4,77 

V 9 5 6,25 
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ZA 28 11 4,77 

DC 67 26 5,53 

DD 46 18 5,41 

DE 131 60 8,27 

DF 57 20 8,66 

DH 23 N/A 8,91 

DI 22 12 13,86 

Table 4 - Statistics related to the image sets. (1) gives the number of (3D) matches found between the two stereo 

cameras and (2) shows how many of those matches were considered in-consensus with the final result (on average). (3) 

shows the processing time in seconds it took to compute an estimate (3.4Ghz Intel Core2Duo, multi-threaded). 

Note that for the approach to work well, enough salient points should be detected which could 

constrain the type of scenes. Specifically it helps if the scene contains sufficient interesting objects 

and with little repetition of scene elements. 

4.6.1. Virtual View Rendering 

Virtual view rendering is interpolating the view from a virtual camera based on multiple known 

views. A requirement for virtual view rendering is knowing from which position (and orientation) 

these known views were taken relative to each other, in other words knowing the calibration. This 

calibration information can be obtained using the system described in this work. As the quality of 

this calibration has an effect on the quality of the virtual view image, it can be used as an evaluation 

method geared towards human perception. 

Specifically we use virtual view rendering to compare a virtual view generated based on the 

calibration found by OTESC and based on the calibration provided by the manual calibration method. 

Depending on the significance of the visual differences we can conclude whether or not OTESC 

provides a calibration good enough for Virtual View Rendering. 
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Figure 21 – Four difference images between a virtual view generated based on the ground truth calibration and the 

calibration found by OTESC. Image sets:  
  
  

 , of which F, I and V are image sets with a quite large translation error 

compared to the ground truth. 

 As can be seen in Figure 21 there are visible differences between the virtual views generated 

based on OTESC and the virtual view generated based on ground truth calibration data. However 

these differences are mostly visible on the edges, indicating a small shift between the two images. 

Image set A, which has a low Reprojection, translation and rotation error, still shows significant 

difference at the edges. On image set V the differences seem larger than in the other images, which 

is consistent with the large translation / rotation error in Table 3. The virtual view based on OTESC 

appears slightly zoomed in. 

Overall these errors do not significantly change the viewing experience for a user; the slight 

offset is most likely not noticeable. However based on these results it is very difficult to draw a 

meaningful conclusion; the quality of the virtual view rendering technique is too low. Also the virtual 

view rendering technique seems very sensitive to small calibration errors; there is a noticeable 

difference in quality even for the quite well calibrated image set A, see Figure 22. More details 

regarding the virtual view algorithm can be found in chapter 5. 
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Figure 22 – Quality difference for image set A. (Left) OTESC based virtual view (Right) Ground truth based virtual view 
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5. Virtual View Rendering 

Virtual view rendering, also known as multi view rendering, are techniques which can be used to 

generate (render) an image from a virtual camera position using imagery from real cameras. There 

are two kind of approaches toward virtual view rendering. Model-based rendering techniques 

explicitly try to reconstruct the 3D geometry (model) of the scene. Image-based rendering 

techniques do not use 3D geometry but work directly with the camera views. Hybrid approaches also 

exist [31]. 

The specific virtual view rendering technique used and implemented in this work is an image-

based rendering technique and is discussed in more detail in [31]. Note that the algorithm is not 

specifically for stereo cameras; any set of calibrated cameras can be used. What follows is a brief 

explanation of the algorithm and its implementation. 

5.1. Algorithm 

Figure 23 gives an overview of the rendering algorithm for a given pixel. Suppose you have eight 

real views and want to generate a view (the empty image and grayed out camera in Figure 23) from 

a virtual position. Each pixel value of the virtual view is calculated independently using a ray tracing 

scheme, which makes this algorithm very suitable for parallel processing. The calibration information 

of the real views must be known and the calibration of the virtual view is also known, as it is selected 

by the user. The color value the virtual pixel should have, corresponds to (the projection of) a part of 

an 3D object (3D coordinate) in the scene. The line on which this object lies can be calculated by 

tracing a ray from the CCD through the lens into the scene (using the known calibration). However 

the depth along this line at which this object lies is unknown.  
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Figure 23 – Overview of Virtual View Rendering algorithm [31]. 

The algorithm performs a brute-force search for a large number of depths along the line, 

specially for points between 1.00 and 3.00m along the line, with steps of 0.01m. So for each pixel a 

total of 200 depth hypotheses are checked. Each depth hypothesis corresponds to a 3D coordinate. 

Using the known calibration, the projection of this 3D coordinate (WCS) onto pixel coordinates 

(IMCS) for each real view are determined. If these pixel coordinates lie outside the image, the image 

is ignored for this specific depth hypothesis. If the pixel coordinates lie inside the image, its RGB 

value tells something about the object it sees. The basic assumption behind the search is that if the 

cameras all see a different color, there is no object at the given point and the pixels represent points 

behind the coordinate (Figure 24 - Left). And if all (or many) cameras see the same color for a given 

3D point, there is an object (with that color) there (Figure 24 - Right). This is formalized using the 

variance of the RGB colors of each real view, where the depth with the lowest variance is chosen as 

the best depth (Figure 25). The corresponding mean color is chosen as the pixel value. 
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Figure 24 (Left) Disagreement between cameras; high color variance (Right) Agreement between cameras; low color 

variance (all green) 

 
Figure 25 – Example plot of color variance for all depth levels ([31]) 

In order to deal with occlusion and to improve the resulting image, the proximity of real cameras 

to the virtual camera is taken into account. Specifically each real camera   is associated with a 

weight    expressing the distance to the virtual camera   : 

 
   

 

         
           

           
         

 

 

(16)  

This weight    is then used in both the mean and variance calculation to give more influence to 

cameras near the virtual camera. 
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Using only one pixels’ color to match the depth among different views brings both a large 

advantage and a large disadvantage. The disadvantage is of course that one pixel alone is a very 

weak indicator of whether each camera sees the same object. The advantage is that for areas where 

the depth cannot be reliably estimated (by any photometric consistency matching strategy), such as 

uniform backgrounds, the algorithm will still pick the right color (although not the right depth) with 

great probability, which from a human perception point of view likely gives a smoother viewing 

experience.  

5.2. Implementation 

The algorithm was first implemented in C++ based on the details in [31] (the original source code 

was not available). This implementation took over 15 minutes to render a 1024x640 virtual view 

from eight real images, on an Intel Core2Duo 3.4Ghz PC (using multi-threading).  

Next the algorithm was implemented in OpenCL. OpenCL (Open Computing Language) is a 

framework and programming language initially developed by Apple to perform parallel processing 

across heterogeneous platforms such as CPU (processor), GPU (video card) and in the near future 

mobile phones [32]. Currently the OpenCL specification is maintained by the Khronos Group and 

several large manufacturers like AMD/ATI, IBM, Intel, Nvidia are increasingly incorporating support 

for OpenCL in their products. 

OpenCL has build-in vector math and other mathematical functions taking advantage of SIMD 

(Single Instruction, Multi Data) operations for speed-ups. Additionally running OpenCL code on a 

GPU tremendously speeds up the computation of parallel algorithms by taking advantage of the 

parallel architecture of GPU’s.  

The resulting OpenCL implementation can render a single frame in about 0.5 seconds on a GPU 

(ATI Radeon HD 4870), which is roughly a 1800x speedup compared to the C++ implementation. 

Running the OpenCL implementation on CPU (Intel Core2Duo, 3.4Ghz) takes about 5.5 seconds, 

which is still a 180x speedup. Although the OpenCL code has been optimized, the algorithm structure 

is identical to the C++ code.  

Unfortunately there is still an small unexplained difference in both quality and viewpoint 

position between our implementation and the one in [31]. Although the viewpoint of our 

implementation seems correct compared to ground truth images (whereas the one in [31] is slightly 

off), their output is of higher quality.  
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6. Conclusion 

The goal of the system described in this paper is to calibrate multiple stereo cameras 

automatically; i.e. find the transformations that describe their relative positions and orientations. 

The calibration technique requires no calibration object or user interaction and the resulting 

calibration can be used for virtual view rendering in 3D video.  

We have looked at combinations of several state-of-the-art salient point algorithms and error 

measures and showed that SIFT combined with the Reprojection Error criterion is most suitable for 

our system. Also we have applied several additional techniques, such as threshold relaxation and 

multi-descriptor matching to increase the robustness of our system.  

Two distinct strategies to deal with three or more stereo cameras have been proposed and we 

have showed that combining multiple transformations quickly leads to issues due to propagation of 

errors. 

We have showed that the chosen approach works well on a large number of image sets and for 

several of those sets we obtain a transformation that differs from the ground-truth with a 

reprojection error of less than 1 pixel. 

Finally we have implemented an existing virtual view rendering algorithm in OpenCL to evaluate 

our system. The implementation gives a 1800 times speed increase when ran on programmable 

graphic hardware, compared to a reference C++ CPU implementation. Unfortunately the quality of 

the rendering algorithm is too low for evaluation purposes. 
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7. Future Work 

Several issues remain unaddressed and several angles remain unexplored. For practical 

application of this approach the processing time should be decreased, for example using GPU 

hardware. Another goal should be to improve the robustness of the system in terms of practical use, 

for example by using parameter relaxation in more places. Also dynamic parameters can be used, for 

example the match ratios could perhaps be calculated based on the number of points available and 

the number of correspondences desired. The same applies to the number of RANSAC iterations 

required. When using this system in practice, the best transformation found should still be rejected 

if the RANSAC error measure exceeds a certain threshold. Also if using OTESC to continuously 

recalibrate the system, some mechanism must be in place to prevent ‘overwriting’ a good calibration 

with a worse calibration. 

Another practical improvement could be to combine this approach with a method which also 

determines the stereo-intrinsic parameters from the scene images, using similar algorithms and 

techniques. This is possible, except that this stereo-intrinsic calibration cannot be determined in 

meters based purely on the scene, so the baseline could still be set manually. This would decrease 

the accuracy but would increase the flexibility of the overall system, as it would be an all-in-one 

calibration system. 

More research needs to be done in the use of this system on multiple successive frames (at 

internals) to obtain more information about the scene than possible from a single frame, although it 

is unlikely this provides much more information when there is no scene movement. 

One of the observations from the final results seems to be that the algorithm performs better on 

the computer generated images than on the real images. One hypothesis is that this is caused by the 

relatively poor quality of the real images, due to noise and out-of-focus effects. This hypothesis 

could be tested by using higher quality/resolution cameras to see if OTESC performs better there. 

Unrelated to the OTESC system itself, but interesting for evaluation, is to use more advanced 

virtual view rendering techniques to compare the transformations found by OTESC with the ground 

truth transformations and judge the perceptive quality of both views. The virtual view rendering 

technique used as evaluation now, although interesting, proved to be of insufficient quality to draw 

solid conclusions. 
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Appendix A Image Sets 
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Appendix B Salient Point Algorithms - Details 

B.1. SIFT 

SIFT [14] stands for Scale-Invariant Feature Transform  and is an algorithm aimed at performing 

object recognition, by matching many local image features instead of using a few complex (for 

example geometric) features. 

B.1.1. Algorithm 

Image points are selected as salient points (keypoints) if they are a local extreme of a Difference-

of-Gaussian (DoG) function, and are searched for across all possible scales of the scale-space of the 

image. The scale-space           of an image        is defined as the convolution of the image with 

a Gaussian G at scale σ: 

 
Figure 26 – Scale Space (left) and Difference of Gaussian (right) 

                           (17)  

 
          

 

    
              

 (18)  

The scale space can be divided in several octaves, for each next octave the image is sub sampled 

by a factor 2, which correspond to a doubling of scale σ. Within an octave the scale σ is increased by 

a factor k (less than 2). Between each successive scale within an octave, the DoG is calculated with: 

                                          

                       

 

 

(19)  

 

where k is 21/s, with s the number of scales per octave. A value s of 3 scales per octave was found 

to give the highest repeatability [15].  
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Whether a point is a local extreme, and thus selected as 

candidate interest point, is checked by first comparing a point 

with its 8 neighbors at the same scale. If it is the minimum or 

maximum at this scale, the point is compared with it 9 neighbors 

in the scale below and if it’s still a local extreme also with the 9 

neighbors in the scale above. For a typical image (500x500 pixels) 

this leads to about 1000-2000 candidate interest points. Note that 

a total of s + 3 Gaussian images must be produced per octave, to obtain s + 2 DoG images. The two 

extra DoG images (highest and lowest scale within the octave) are required when determining if a 

point is a local extreme.  

In the original version of SIFT [14] the location and scale of the sample point closest to the 

extreme was used as position for the key point. In a revised version of SIFT [15] the location of the 

extreme is interpolated by fitting a quadratic Taylor expansion of the Difference-of-Gaussian scale-

space function          on the extreme sample point and its neighbors, with:  

 
         

   

  
  

 

 
  

   

   
  (20)  

where D and its derivatives are evaluated at the sample point and: 

            (21)  

is the offset from the sample point. This can be rewritten to determine   , the interpolated 

location of the extreme: 

 
    

   

   

  
  

  
 (22)  

This approach provides substantial improvements to matching and stability [33]. The result of 

the quadratic function for the interpolated extreme (     ) is also used to discard points that have a 

low contrast (low Difference-of-Gaussian), for which the original authors apply a threshold of 0.03 

(assuming pixel values in the range [0 – 1]). If the offset of the extreme    is larger than 0.5 in any 

direction, the processing is repeated with the sample point that lies in that direction, as the extreme 

must lie closer to that sample point. 

Next step is to discard interest points that lie on an edge. The Difference-of-Gaussian function 

has a strong response along edges, but unfortunately there are usually many similar points on an 

 
Figure 27 – Nearest neighborhood 

used for determining the extreme 
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edge. Finding a correspondence for an edge point results in many potential matches, because the 

location along the edge is poorly determined [15] and therefore all edge points must be discarded. 

The ratio between the two principal curvatures is calculated and any keypoints with a ratio above 10 

are eliminated. 

B.1.2. SIFT Descriptor 

All keypoints that remain are kept as interest points and are described using the SIFT descriptor. 

The descriptor allows easy comparing with other interest points. The descriptor consists of a feature 

vector of 128 elements. 

Orientation 

By describing the interest point relative to its main orientation, the description can be kept 

rotation-invariant. The main orientation is estimated by determining the dominant local image 

gradient direction(s). Using pixel differences to calculate the gradient orientation        and 

gradient magnitude       , an orientation histogram with a bin size of 10 degree is created.  

                                                       (23)  

 
              

                   

                  
  (24)  

These gradient calculations are performed for all samples within a region around the keypoint, in 

the image          at the scale   of the keypoint. The calculated magnitude and a Gaussian-

weighted circular window (σwindow = 1.5 σkeypoint) are used as a weighting factor for each sample in the 

histogram. If there are any secondary peaks within 80% of the highest peak within the histogram, 

additional interest points are generated for each peak. For each found peak in the histogram, a more 

accurate orientation is interpolated by fitting a parabola over the 3 histogram values closest to the 

peak. 

Feature Vector 

For each keypoint, again using              , with σimage = σkeypoint, the gradient orientation 

       and gradient magnitude        for 16x16 samples in a region around the interest point are 

calculated. The orientation of the region is the main orientation found in the previous step. The 

gradient orientation of the samples are used to construct 4x4 histograms (Figure 28), which are 

again weighted with their gradient magnitude and a Gaussian weighting function (σGaussian = 0.5 

σkeypoint). This gives 4x4 histograms with 8 bins, which is (4x4x8 =) 128 values in the feature vector. In 
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the original paper [14] a descriptor of 160 values is described, using additional 2x2 histograms 

sampled from the image at one octave higher.  

 
Figure 28 (Left) Sample window for the feature vector with Gaussian weighting function as circle. (Right) The histograms 

(each bin represented as vector) as keypoint descriptor. 

To reduce the effect of illumination changes the descriptor is reduced to unit length. Any 

dominant orientation that has a magnitude of 0.2 or higher after normalization is clipped to 0.2. 

After that the vector is re-normalized. The value of 0.2 was established experimentally [15] and puts 

more emphasis on the distribution of orientations instead of matching the magnitudes. 

B.1.3. Matching 

The matching of interest points is done by taking the Euclidean distance between their 

descriptor vectors. To accept a match as a correspondence, the ratio between the best and second-

best match must be below 0.8. If it is above that ratio, no reliable choice can be made between the 

two. This ratio was determined experimentally and eliminated 90% false positives and less than 5% 

true positives in an experiment with randomly transformed images against a database of 40000 

keypoints [15]. 

B.2. SURF 

A relatively new interest point detector and descriptor is SURF, Speeded Up Robust Features 

[16], which is partly inspired by SIFT. This algorithm is relatively quick compared to SIFT, about 3 

times faster, and the authors claim it has similar or slightly better performance. In another 

comparison [17] it is also concluded that SURF outperforms SIFT when it comes to viewpoint 
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changes, which is of course an important criterion. SURF does find fewer matches, and is slightly less 

invariant to illumination changes. 

The normal version of SURF is invariant to translation, scaling and rotation. A version called U-

SURF (upright SURF) is only invariant to rotations up to 15°, but is faster than regular SURF. Since in 

most practical situations the view rotation is typically below 15°, it may be sufficient to use U-SURF 

for camera calibration. 

B.2.1. Algorithm 

The algorithm works by calculating a Hessian matrix   per image point, at different scales σ. This 

detects blob-like structures where the determinant is highest. The Hessian matrix is given by: 

 
         

                

                
  (25)  

Where          is the convolution of the image point      at coordinate   with a Gaussian      

second order derivative in the horizontal direction: 

 
          

  

   
           (26)  

In SURF the values of          are approximated by         . Instead of having a discrete 2nd 

order Gaussian derivative, the derivate is approximated by using a box filter, having just three or 

four areas with a fixed multiplier, as can be seen in the figure below. 

 
Figure 29 (Left) Discrete 2nd order Gaussian as used by Lyy and Lxy. (Right) Box approximation of 2nd order Gaussian used 

by Dyy and Dxy 

The approximated determinant of the Hessian matrix is now given by: 

                               
  (27)  

The value w is required for energy conservation between the real and approximated Gaussian 

kernel. Although the exact value of w depends also on the scale, a fixed value of 0.9 can be used 
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without significant impact [16]. The box filter approach allows an important speedup using a 

technique called Integral Images. 

Integral Image 

Integral Image [34,35] is a quick method to calculate 

the integral over an area. The Integral Image is pre-

computed, so that every point in the image contains the 

integral sum of the area in the original image that is above 

and to the left of that point. When the integral of an area 

for the original image must be computed, for example to 

calculate the approximated second order Gaussian, the 

Integral Image can be used to perform this calculation 

without visiting all pixels, instead visiting only the corners of the area in the Integral Image. The 

integral of the area is given by A-B-C+D, where A, B, C, D are the corners of the area. This 

optimization contributes a lot to the speed of SURF, as calculating the integral is independent of the 

area size.  

Scale-Space Representation 

To obtain scale-invariance the 

determinant of the Hessian matrix is 

calculated at different scales, using a 

scale space, which is similar to SIFT. 

Scale-spaces are typically implemented 

using an image pyramid, where the image 

is down sampled for higher pyramid 

levels. In SURF the image itself is not down sampled, but is instead smoothed with a box filter of 

increasing size, which allows exploiting the integral image again. Just like SIFT, each octave is 

subdivided into a constant number of scale levels.  

 

The initial filter is size 9x9 for the first 

octave (approximately equivalent to a 

Gaussian derivative of σ = 1.2), and the 

filter size is increased by 6 (15x15) for 

each subsequent scale. This is continued 

until the filter exceeds twice the initial 

 

Figure 30 – Calculation of area from pre-

calculated Integral Image 

 
Figure 31 – Instead of scaling the image (Left), the filter kernel is 

scaled (Right), which can be done much more efficiently due to 

the use of Integral Images 

 
Figure 32 – Used kernel filter size at different octaves at 

Gaussian scales 
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size (so it exceeds the octave). This completes one octave. The next 

octave starts at the filter size + filter size increase. In each new octave 

the ‘filter size increase’ is doubled (6 to 12 to 24 etc). The overlap in 

octaves is required because the first and last scales in the octave are 

used only to compare against extremes, not to find them. For each 

potential interest point its 3x3x3 neighbor region is checked to see if 

this point is the local extreme determinant (non-maximum 

suppression), very similar to SIFT. The exact location of the interest 

point is interpolated in scale and image space, giving subpixel precision. The scale s at which the 

determinant was extreme is stored with the interest point for later use.  

B.2.2. SURF Descriptor 

The next step is to describe these points using the SURF descriptor. This description is needed to 

match the point with its corresponding point in another 

image. Depending on the purpose, the descriptor size can be 

chosen to be between 36 and 288 elements, the most 

common being 64 of 128 elements (called SURF-64 and 

SURF-128 resp.). A bigger descriptor allows for more exact 

matching, but also takes more computation time. The 

descriptor stores distributions of intensity using Haar 

wavelets as a simple gradient description.  

Orientation 

For the case of regular SURF (in contrast to U-SURF), the main 

orientation of the interest point must also be determined, to allow the 

descriptor to describe the point in a rotation-invariant manner. Haar 

wavelets (side length 4s) are used on sample points (sampled at a step 

size of s) within a radius of 6s around the interest point. The Haar 

responses are then weighted using a Gaussian with σ=2s [16] ([23] claims 

2.5s), and represented as points in space. From the horizontal and 

vertical responses, within a sliding orientation window of angle π/3, a 

vector is calculated. The longest vector found is chosen as the main orientation. 

Feature Vector 

 
Figure 34 – Visualization of interest point 

scale and orientation as found by SURF 

 
Figure 35 – Sliding 

orientation window, the 

red vector is the sum of all 

responses in the window 

 
Figure 33 – Nearest 

neighborhood used for non-

maximum suppression 
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The found scale s per interest point determines the size of the sample window, 20s. The sample 

window is split into 4x4 subregions for SURF-64, and within each region the Haar wavelet of 25 

(regular) points is calculated at scale 2s.  

 
Figure 36 – Oriented sample window with Haar response per sample 

The resulting Haar responses (   and   ) are weighted by a Gaussian with σ=3.3s to increase 

robustness towards geometric deformations and localization errors. The responses are summed into 

four values for each subregion: 

                                (28)  

These four values represent the subregion, which gives (16 regions * 4 values =) 64 elements. In 

the case of for example SURF-144 the window is divided into 6x6 regions (36 regions * 4 values = 

144). For SURF-128 the responses are summed into 8 instead of 4 values per subregion (16 regions * 

8 values = 128). 

B.2.3. Matching 

When matching the point descriptors found in one image with the point descriptors found in 

another image, the distance between descriptors is calculated with the sum of squared errors 

between elements. There is a speedup here, to make sure only descriptors of the same contrast are 

compared. A match is found if the ratio between the distance of the first and second-best match is 

smaller than some threshold. In [16] a ratio of 0.65 was found to work well. The idea is that if the 

second-best match is too close, no good distinction can be made. 

B.3. FAST 

FAST (Features from Accelerated Segment Test) is a corner detector [18,19], designed for use in 

real-time tracking systems. The detector performs a very simple test for each pixel p, by examining a 
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circle of 16 pixels around the pixel. A corner is detected if at least n=12 contiguous pixels  (dubbed 

FAST-12) are all above or all below the intensity of p by some threshold t. Candidate pixels can be 

rejected early by testing first pixels 1, 9, and after that 5 and 13. Three of those four pixels must all 

be above or below the intensity of p by the threshold. For the found corners, the intensities of the 

16 pixels are used as the feature vector.  

Several additional optimizations are performed in the matching step. As a speedup, ‘positive’ 

corners (circle pixels higher intensity than center pixel) are not compared with ‘negative’ corners. To 

prevent the O(n2) cost of comparing all corners with all corners, the feature vectors are sorted by 

their mean. To find a match for a corner, a linear search is started from the feature vector with the 

closest mean, which is found using binary search. The matching itself is done by calculating the sum 

of squared distances (SSD). As a speedup, the feature vector is transformed to compact most of the 

energy into the first few elements; this allows early rejection on the partial SSD. The transformation 

is done using the Haar Wavelet Transform. The linear search can be aborted because the following 

bound exists: 

                     (29)  

where l is the size of the feature vector,    is a feature vector and    is its mean. The best match 

found, is picked as correspondence. The authors note [19] that while FAST performs comparable to 

more complex interest point detectors like SIFT, FAST is relatively sensitive to noise.  

A variation called FAST-9 [36] changes the corner criteria to only n=9 contiguous pixels and uses 

machine learning to adapt the order of pixel testing to the distribution of corner appearances. To 

this end the detector can be trained on images from the target application domain. Both the speed 

and repeatability of FAST-9 outperforms the original FAST-12. Also non-maximum suppression is 

used to eliminate adjacent features. A subsequent extension called FAST-ER [36] generalizes FAST-9 

even more. 

B.4. A-SIFT 

Methods like SIFT and SURF normalize the translation and rotation component and simulate the 

scale (zoom) through image pyramids to obtain an description invariant to these parameters and 

partially invariant to affine transformations. A recently proposed method ASIFT (Affine SIFT) [20,21] 

attempts to obtain a description fully invariant to affine transformations. The method simulates all 

image views obtainable by varying the latitude and longitude camera angles. Next the resulting 

views are compared using the normal SIFT algorithm.  
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Figure 37 – Overview of ASIFT algorithm. Simulated views of both source images (A and B) are described and matched 

using SIFT. 

B.4.1. Algorithm 

Each input image is transformed by simulating a finite and small number of affine tilts (t = 

          , with θ being the latitude) and rotations (longitude φ)1. The sampling steps are 

distributed unevenly over the parameter space (see Figure 38) and chosen such that more samples 

are taken at higher tilts, as any displacement (θ or φ) introduces more image distortion at higher 

values of θ.  

Given the two parameters (θ, φ) the view is simulated using a rotation followed by directional  -

sub sampling (combined with a Gaussian convolution to prevent aliasing artifacts). 

In all simulated images SIFT keypoints are then detected and described (using the standard SIFT 

descriptor, see B.1.2). Keypoints too close to the border of the simulated view are removed. 

B.4.2. Matching 

To match two images using ASIFT, the steps described above must be performed for each image. 

For all tilts and rotations of image 1, the matching loops over all tilts and rotations of image 2 and 

the normal SIFT matching strategy is used per image pair. Any identical matches (same coordinates) 

are removed and any many-to-one matches are removed as well.  As the matching must happen for 

                                                           

1
 Two type of rotations have now been introduced. The former is a rotation around the optical axis, eg 

normal image rotation. The latter introduced here is somewhat similar to a yawing movement around the 
object and depending on the tilt can change the perspective considerably, see Figure 39. 
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all simulated views, the matching complexity of ASIFT is 180 times that of SIFT. To decrease the 

computational burden, a coarse-to-fine acceleration strategy is proposed. 

Finally false matches are eliminated using epipolar geometry filtering. This is done using the 

ORSA algorithm, which works similar to the RANSAC outlier removal strategy used in this work.  Note 

that this step is disabled as it takes considerable time and a similar outlier removal technique is 

already present in this work. 

 
Figure 38 – Parameters space of latitude θ and longitude φ. The black dots show the values for which a view is 

simulated. 

 
Figure 39 – The bottom left image is a tilted variant of the top image. The bottom right image is both tilted and rotated. 
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ABSTRACT
In this paper, we describe a system that performs online
transformation estimation between pre-calibrated stereo cam-
eras. This allows the stereo cameras to be moved around and
automatically re-calibrated without the use of a calibration
object. This also allows the set-up to recover from accidental
nudges that invalidate the extrinsic (external to the stereo
camera) calibration. The obtained transformations can be
used in virtual view rendering for 3D Video.

The relative positions and orientations of the stereo cam-
eras are obtained using sparse point correspondences found
in different views of the scene. For each stereo camera, 3D
coordinates of salient scene points are triangulated and their
image feature descriptors are used to locate the same points
in the views of other stereo cameras. The salient point de-
scriptors SIFT and SURF are evaluated for this purpose.

Given enough salient image points, the proposed solution
accurately finds the transformation between stereo camera
pairs with a reprojection error less than 1 pixel.

Categories and Subject Descriptors: I.4.1 [Image Pro-
cessing and Computer Vision]: Digitization and Im-
age Capture—Camera calibration; I.4.8 [Image Process-
ing and Computer Vision]: Scene Analysis—Stereo

General Terms: Experimentation, Performance, Verifica-
tion

1. INTRODUCTION
With recent blockbusters such as Avatar and Alice in

Wonderland, 3D video is gaining more and more momen-
tum. At the same time 3D-ready television sets slowly be-
come available on the consumer market. Most of the current
3D material is actually stereoscopic; a different image for
each eye. More advanced 3D video and 3D video equipment
can provide an even stronger illusion by presenting a view
based on the position of the viewer. If the viewer moves, the
perspective of the 3D video changes as well.

One way to obtain this type of 3D video, is to place sev-
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eral cameras at fixed positions around the scene and use
their images to interpolate the views from other positions.
We refer to this as virtual view rendering. Knowing the rela-
tive position and orientation of cameras with respect to each
other enables to extract the scene / geometry by relating all
camera images. The scene model can subsequently be used
to render new images from virtual cameras at arbitrary po-
sitions. The accuracy of the found transformations directly
affects the quality of the virtual views.

Using stereo cameras instead of ordinary cameras has sev-
eral advantages. Since the baseline between the two individ-
ual views of each stereo camera is known (in meters), depth
triangulation is relatively easy and all scene coordinates and
transformations can be determined in meters, which is not
trivial when using a single camera setup.

For the purpose of this paper, we divide the (stereo) cam-
era parameters in two types: stereo-intrinsic parameters in-
clude both parameters intrinsic to the individual cameras
(focal length, lens distortion, central pixel, etc) and extrinsic
parameters between the two individual cameras; the stereo
baseline etc. The parameters extrinsic to a stereo camera
rig, so its relative position and orientation, are referred to
as stereo-extrinsic.

Figure 1: Four stereo cameras capturing a scene.

There are two main approaches towards camera calibra-
tion. In the first approach a calibration object with known
geometry, for example a plate with a checkerboard pattern,
is captured by all cameras and camera parameters are com-
puted such that they are consistent with both the known
geometry and the image projections of the object. This typ-
ically results in a highly accurate calibration [14, 13, 12]. A
disadvantage of this approach is the required manual inter-
action (placing a calibration object in the scene, usually in
different orientations), which also means the normal record-
ing, if any, must be interrupted.

The second approach aims to overcome these problems
by performing calibration using only the scene information
available in the images taken by the cameras. This ap-



proach is commonly referred to as self-calibration, or on-
line calibration. For many applications this self-calibration
is implemented as a structure from motion (SfM) approach
[5], which simultaneously finds the 3D scene structure and
all camera parameters by analyzing the motion of objects
across views and/or over time. As SfM approaches often
take a significant amount of time, it may be more efficient
to perform only a partial calibration in systems that require
periodic re-calibration. For example, in [11] the intrinsic pa-
rameters are supposed to be known a priori and in [8, 10],
specifically aimed at stereo cameras in distributed 3D visual
sensor network, the stereo-intrinsic parameters are assumed
known and fixed, leaving only the stereo-extrinsic parame-
ters to be estimated.

In this paper we propose an online transformation esti-
mation approach (dubbed OTESC ) which is able to quickly
recover the stereo-extrinsic parameters without manual in-
teraction with the scene. This allows for a flexible record-
ing environment and guards against accidental invalidation
of the calibration, for example if someone nudges a stereo
camera rig.

The paper is organized as follows: In section 2 we discuss
some preliminaries, specifically the used camera set-up and
the required pre-calibration. Section 3 gives a detailed de-
scription of the proposed approach. Results are provided in
section 4.

2. PRELIMINARIES

2.1 Camera Set-Up
Our 3D Studio consists of four stereo cameras (see figure

1), each consisting of two FireWire AlliedVisionTec Marlin
F-046C[1] cameras bolted on a rigid frame, which in turn
is mounted on an ordinary camera tripod. The cameras
are connected with a PC through a FireWire hub mounted
on top of the cameras (see figure 1) and provide 640x480
images. The stereo baseline is adjustable, but was fixed at
10.4cm for all experiments.

2.2 Pre-Calibration
The proposed system works with pre-calibrated stereo cam-

eras. We make the assumption that moving stereo cameras
does not change the stereo-intrinsic parameters, given that
the cameras are mounted tightly on a rigid frame. There-
fore a stereo camera only has to be calibrated once. The
obtained calibration data should remain valid as long as the
stereo camera rig is not modified (such as changing the fo-
cal length or stereo baseline). In practice the stereo-intrinsic
calibration may also become invalid due to external factors
such as temperature changes, so we recalibrate periodically.

All pre-calibration data for experiments in this paper was
obtained with a manual calibration technique using a cali-
bration plate with several dots, as described in more detail
in [12].

3. APPROACH
The proposed approach can be summarized as follows (see

figure 2):

• Detect salient image points in each view

• For each stereo camera, establish image point corre-
spondences between the stereo views and triangulate
their 3D coordinates

Figure 2: From bottom to top the steps of the pro-
posed approach are visualized. First the salient im-
age points are detected and matched between stereo
views. The 3D positions of their scene points are tri-
angulated and again matched, now with points from
a second stereo camera. Finally the transformation
that aligns the two point clouds is estimated.

• Match 3D points between a pair of stereo cameras us-
ing original image point descriptor

• For each pair of stereo cameras, estimate transforma-
tion from RANSAC-selected (3D) correspondences

• Resolve transformations between all stereo cameras

3.1 Salient Image Points
Each stereo camera simultaneously takes an image of the

scene from each view, resulting in two images per stereo cam-
era. The first step in OTESC is to find salient image points
that can be uniquely matched in these two images. Two
techniques were considered for this step. Scale-Invariant
Feature Transform (SIFT) [9] and Speeded-Up Robust Fea-
tures (SURF) [2] are both algorithms that find and describe
salient image points, at subpixel accuracy, such that they
can be robustly matched with other salient points.

SIFT is commonly used and SURF is partly inspired by
SIFT, aimed at providing similar quality features in less
time. Both descriptors are insensitive to scale and SIFT
is invariant to small affine transformations.

The implementations used are [6] for SIFT and the Open-
SURF library [3] for SURF. The parameters were set to the
author’s recommended settings, except that for SURF the
Upright-SURF variant was used. Upright-SURF is quicker,
but only orientation invariant up to about 15◦[2], which is
sufficient for our purpose. In section 4.1 a comparison be-
tween the two algorithms, in terms of accuracy of the pro-
posed solution, is given.

3.2 Stereo-Intrinsic Matching
For each stereo camera, salient point detection and de-

scription is applied on both views (L andR) and sparse point
correspondences are established between the two views.

SIFT and SURF use a similar matching scheme; match-
ing happens not based on the distance between two feature
vectors, but on the ratio between the distance with the best



and second-best match. If an image contains repeating pat-
terns for example, there are many valid candidates and the
matching would be ambiguous. The ratio ensures that the
correspondence is only accepted if it is unique among all
candidates.

Ideally, the corresponding image points (i, i′) found (i ∈
L, i′ ∈ R) have originated from a single 3D scene point x.
Since the stereo-intrinsic calibration parameters are known,
it is possible to triangulate the 3D coordinates of x relative
to the stereo camera. For both individual cameras, a ray
is traced from the optic center through the image plane (at
the image point coordinates), see figure 2. The rays should
converge near scene point x. If the distance between the two
rays at the point of closest convergence is above a thresh-
old g, the correspondence (i, i′) is discarded, as this would
indicate that the coordinates of the two salient points were
inaccurate, or did not originate from the same point x.

We associate point x with the salient point descriptors of
both image points for further matching with other stereo
cameras. After this stereo-intrinsic matching each stereo
camera has a list of scene points with each two associated
image descriptors (L,R).

3.3 Stereo-Extrinsic Matching
For a pair of stereo cameras (A,B) the transformation be-

tween them is obtained by first establishing correspondences
between the scene points. The matching is performed for
all four combinations of the two associated descriptors for
each point: (match(LA, LB),match(LA, RB), etc). This is
repeated inversed: points from B are matched with A, re-
sulting in a total of eight matching runs. These eight runs
typically result in 2 to 3 times more matches (after removing
duplicates) than a single run.

Scene points that have been matched are ideally the same
world point seen from two different viewpoints. As the
matching process is based on photometric consistencies, it
will likely produce physically incorrect matches. Therefore
the transformation estimation must be robust to outliers;
see the next section.

3.4 Transformation Estimation
The (affine) transformation T between the two matching

point clouds is calculated using the Absolute Orientation
algorithm [7]. This algorithm requires a minimum of four 3D
correspondences and estimates the rotation and translation
required to align the clouds, represented as:

T =

(
R t

0 0 0 1

)
(1)

whereR is a 3x3 rotation matrix and t is a translation vector.
The transformation T is estimated such that for each cor-

respondence (x, x′), ideally:

x′ − Tx = 0 (2)

with x and x′ in homogeneous coordinates.
To cope with noise and incorrect matches, a RANSAC

[4] scheme is employed. During each RANSAC iteration a
random subset of four correspondences is selected and the
transformation T is estimated. Remaining correspondences
(x, x′) are considered in-consensus, and added to the con-
sensus set C, if their correspondence is adequately modeled
by the found transformation. This is formalized in section
Consensus Criterion. If C consists of at least 50% of all

correspondences, or at least 20, the error on all inliers of the
found transformation is evaluated (see section Transforma-
tion Error). The entire process is repeated a fixed number
of iterations (k=10000), and after each iteration the best
transformation is kept. It is possible that no transforma-
tion is found at all, because not enough correspondences are
found or in-consensus.

Consensus Criterion
To determine if a correspondence is correctly modeled by
the transformation T under consideration, an error measure
is calculated. Two different measures were evaluated; the
3D Error and the Reprojection Error.

• 3D Error The 3D Error is given by the (3D) Eu-
clidean distance between x′ and its estimate Tx, thus:

3DE = |x′ − Tx| (3)

• Reprojection Error The Reprojection Error is given
by the (2D) Euclidean pixel distance between the pro-
jections of x′ and estimate Tx on the image plane:

RE = |proj(x′)− proj(Tx)| (4)

where proj() projects the 3D point onto the right-most
image plane of the stereo camera associated with x′.
Since the stereo-intrinsic calibration parameters are
known, this projection can be directly calculated.

To use these error measures in the RANSAC scheme, a
threshold is applied of respectively q pixels for the Repro-
jection Error and r meters for the 3D Error. Correspon-
dences with an error below this threshold are regarded as
in-consensus with the current transformation. See section
4.2 for a performance comparison between the two error
measures, and the chosen thresholds.

Note that contrary to the original RANSAC algorithm,
the model is not re-estimated from the entire consensus set
C when using the Reprojection Error. Instead the transfor-
mation found from the original four points is kept, as this
gives better results. An explanation could be that the Ab-
solute Orientation algorithm, due to its nature, minimizes
the 3D Error not the Reprojection Error used as evalua-
tion. When using the 3D Error, re-estimation does lead to
a smaller average error, which is expected.

Transformation Error
The total transformation error is given by averaging the con-
sensus error (either 3D or Reprojection Error) over all cor-
respondences in the consensus set C. This error gives an
indication of the average error the transformation makes on
correct correspondences. We use this error as the fitness
measure for RANSAC.

3.5 Multi Camera Setup
The procedures described above determine, between a pair

of stereo cameras (s, s′), the transformation T (s, s′). We will
now extend this procedure for set-ups with more than two
stereo cameras. Let S be the set of all stereo cameras, so
s, s′ ∈ S. Let C(s, s′) be the number of correspondences
found between s and s′. The goal is to find the position
and orientation of each s relative to a common origin O
(one of the stereo cameras, O ∈ S). We will differentiate
between direct transformation estimation (DTE), which is



the technique described in the previous sections, and indirect
transformation estimation (ITE), which is described in this
section.

A reasonably safe assumption is that if two views have
more overlap, more correspondences can be found and our
approach is better at finding an accurate transformation es-
timation. As perhaps not all pairs (s, s′) have overlapping
views, and some pairs have more overlap than others, there
are different strategies possible in finding all transforma-
tions. Since no knowledge is yet available about the relative
positions and orientations of the stereo cameras, the number
of matches C(s, s′) is used as an indicator of view overlap
instead.

We will discuss two simple strategies to deal with multi
camera set-ups (see also figure 3). In section 4.3 we will give
a numerical comparison between the two.

Minimal Set. Given three stereo cameras {1,2,3}, if the
transformation between {1;2} and {2;3} is already known,
the transformation between {1;3} can be deduced indirectly.
We have implemented this approach as follows. All possible
pairs (s, s′) are evaluated in descending order of number of
correspondences. A graph G is constructed with each stereo
camera s as a vertex V (s). Whenever the transformation
between a stereo camera pair (s, s′) has been estimated, the
edge (V (s), V (s′)) is added to G. Before performing DTE
between each (s, s′), a breath-first search is performed on
G to see if there is a path that connects V (s) and V (s′).
If such a path exists the DTE is skipped; the transforma-
tion can already be indirectly determined. The final step is
to calculate the missing (indirect) transformations between
the origin O and each remaining stereo camera s (s 6= O)
by multiplying the previously found transformation matrices
along the (shortest) path between V (O) and V (s) (ITE).

Origin. Instead of finding the minimal set of most ’over-
lapping’ pairs, this approach performs a DTE between the
chosen O and any stereo camera s (s 6= O), regardless of the
number of correspondences between them. If DTE fails for
an s, an ITE is performed through a stereo camera s′ for
which T (O, s′) is already known. s′ is selected by:

arg max
s′

(C(s, s′)) (5)

In this approach the common origin O, if not given, is chosen
by finding the stereo camera s from S, for which holds:

arg max
s

( min
s′,s′ 6=s

(C(s, s′))) (6)

In words, the minimum number of correspondences a stereo
camera shares with any other stereo camera should be the
highest of all stereo cameras. This should select the stereo
camera which is most ’central’ and has enough correspon-
dences with any other stereo camera for a successful DTE. If
multiple stereo cameras meet this criterion, the stereo cam-
era with most correspondences overall is chosen.

4. EXPERIMENTAL RESULTS
A total of six image sets, each consisting of images from

two stereo cameras, were selected to evaluate the proposed
approach, see figure 6. Each image sets has a different back-
ground and different foreground objects. All images were
shot indoors.

Figure 3: An example multi (stereo) camera setup
with 3 stereo cameras (A, B, C) with their respec-
tive area of overlap (eg. AB is the area which both
A and B see). We assume in this image that the
number of correspondences found is directly corre-
lated to the view overlap. The origin is chosen to be
B. In the Minimal Set approach, the transformation
[B,C] is not estimated directly, but calculated from
the transformations [A,B] and [A,C]. In the Origin
approach [B,A] and [B,C] are calculated directly.

The distance and orientation between the stereo cameras
varied. See table 3 for an indication of the view overlap,
in terms of the rough distance between the stereo cameras
(specifically between the left view of both stereo cameras).

4.1 SIFT versus SURF
As can be seen in figure 4, SIFT outperforms SURF for all

image sets, decreasing the error by 12% to 45%. Image set
studio 2 shows an even larger decrease: 80%. It is not clear
why the error on this particular image set is much larger
with SURF.
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Figure 4: SIFT versus SURF, the y axis shows the
average error relative to the ground-truth transfor-
mation (see equation 7).

4.2 Reprojection Error versus 3D Error
Although both the Reprojection Error and the 3D Error

measure give a good indication of the fitness of a transfor-
mation for a given correspondence, the Reprojection Error
measure gives better results, see figure 5. Only for image
set computers the 3D Error measure gives a slightly smaller
error.

Effectively the Reprojection Error measure is a weighted



version of the 3D Error, diminishing the effect of errors far
away from the camera. This is a desirable property, since we
expect the 3D coordinates of the correspondences at those
locations to be less exact; there is simply less resolution.

A threshold of q = 2 pixels was found to work best on
average and was thus used in all experiments. Should no
transformation be found using this threshold q, the threshold
is automatically relaxed by 1 px, at most 3 times. In other
words, if q = 2 px provides no solution, the estimation is
performed again with subsequently q = 3 px, 4 px, up to 5
px, until a solution is found.

For the 3D Error, a threshold of r = 0.4 mm (relaxed to
1.4 mm, 2.4 mm, 3.4 mm if needed) was used for the 3D
Error criterion.
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Figure 5: Reprojection Error versus 3D Error as
RANSAC criterion, the y axis shows the average er-
ror relative to the ground-truth transformation (see
equation 7).

4.3 Multi Camera Results
Two different strategies for set-ups with more than two

stereo cameras were suggested. In the ideal case, both per-
form n − 1 estimations for n stereo cameras. The goal is
to find the position and orientation of each stereo camera
relative to a common origin. The main difference between
the two strategies is that with the Minimal Set strategy
many transformations relative to the origin are calculated
using ITE from strong DTEs, however this may cause er-
rors to propagate. For the Origin strategy they have been
calculated with DTE, however potentially with very few cor-
respondences.

Image Set DTE matches ITE matches DTE vs ITE
a 44 89 + 97 159.2%
b 10 45 + 38 34.0%

Table 1: Multi-view results for two image sets,
each with three stereo cameras 1,2,3, DTE is
compared with ITE to find T(1,3). The second
column is the number of correspondences avail-
able for DTE of T(1,3). The third column is
the number of correspondences available for ITE:
T(1,2)*T(2,3)=T(1,3). The last column shows the

average reprojection error (equation 4) ratio REDTE
REITE

.

We take a very simple case to evaluate the two strategies.
Given three stereo cameras 1,2,3, assume 1 is designated
as the origin and there are very little correspondences for
pair 1,3 and many between the other two pairs. T(1,3) is
required. It must be verified which is more accurate: DTE

from the few correspondences between 1,3 or ITE using 1,2
and 2,3 with many correspondences.

In table 1 the results from two multi-camera image sets
(with each three stereo cameras) are shown. It is clear that
more experiments are required, but these preliminary re-
sults support the hypothesis that DTE will outperform ITE
if enough correspondences are available, but otherwise ITE
will give better results. With more experiments a strategy
can be developed which makes an informed choice between
DTE and ITE for specific cases.

Translation
Error (cm)

Rotation
Error (degr)

Reprojection
Error (px)

studio 1 0.74 0.33 0.62
studio 2 3.43 2.16 0.41
cabinet 8.27 1.10 0.66
bag 4.56 0.98 1.52
computers 4.40 1.97 3.36
frog 0.84 0.84 1.36

Table 2: Results of OTESC’s performance on sev-
eral different image sets, when compared to the
ground-truth obtained in the pre-calibration step.
The translation error (equation 8) and rotation er-
ror (equation 9) are given for illustration purposes,
see text. The consensus reprojection error is the
main evaluation criterion (equation 7).

4.4 System Performance
In the previous subsections the combination of SIFT and

the Reprojection Error measure turned out to be the strongest
combination and the best choice for our approach. Table 2
lists the results of our approach on several image sets and ta-
ble 3 gives some statistics for each set, such as the number of
matches and processing time. The stereo cameras were pre-
calibrated using the technique described in section 2.2. The
pre-calibration also provides a ground-truth transformation
(TGT ) between the stereo cameras, which is used to evaluate
our approach. The main evaluation criterion is calculated
as follows: For each (x, x′) in the inlier set C selected by the
RANSAC scheme, calculate the difference and average:

1

|C|

|C|∑
(x,x′)∈C

|proj(TGT ∗ x)− proj(TOTESC ∗ x)| (7)

where TOTESC is the transformation found by our approach
and proj() is the pixel projection described in section 3.4.
Note that the point x′ is not required for this error measure.

As can be seen in table 2, the relative position and ori-
entation sometimes deviate significantly from the ground-
truth transformation. It should be noted that both the
OTESC transformation and the ground-truth transforma-
tion are not necessarily physically correct; they are geared
towards minimizing a reprojection error. Therefore the de-
viation in translation and rotation is purely given for illus-
tration purposes. If a transformation T is represented as a
translation component t and the rotation R in Euler angles
(α, β, γ), then the translation error is given by the Euclidean
Distance:

|tGT − tOTESC | (8)



Avg points
per view (1)

Avg matches
stereo-intrinsic (2)

Matches
stereo-extrinsic (3)

Consensus
matches (4)

Distance stereo
cameras (cm) (5)

CPU Time
(sec) (6)

studio 1 511 153 44 25 25 3.94
studio 2 618 189 29 14 25 4.00
cabinet 1237 321 35 25 35 5.93

bag 625 113 20 13 25 3.92
computers 785 253 22 11 55 4.46

frog 783 219 47 21 50 6.54

Table 3: Statistics related to the image sets. (1) gives the average number of salient image points found per
view. (2) gives the average number of correspondences found within the stereo cameras, that remain after
matching and triangulation. (3) is the number of (3D) matches found between the two stereo cameras and
(4) shows how many of those matches were considered in-consensus with the final result (on average). (5)
gives the (rough) distance between the (left view of the) stereo cameras. (6) shows the processing time in
seconds it took to compute an estimate (3.4Ghz Intel Core2Duo, multi-threaded).

and the rotation error is given by:

|αGT −αOTESC |+ |βGT − βOTESC |+ |γGT − γOTESC | (9)

In general the results are good for the six image sets and
the average error smaller than 1 pixel is certainly desirable
for virtual view rendering. Note that for the approach to
work well, enough salient points should be detected which
could constrain the type of scenes. Specifically it helps if the
scene contains sufficient interesting objects and with little
repetition of scene elements.

Figure 6:

[
a, b, c
d, e, f

]
From each of the six image sets

used for evaluation, a single image is shown. In al-
phabetical order (a - f) the image sets are studio 1,
studio 2, cabinet, bag, computers and frog.

5. CONCLUSIONS
The goal of the proposed system described in this paper is

to calibrate multiple stereo cameras, for example to be used
for virtual view rendering in 3D video. We have looked at
several combinations of algorithms and error measures and
showed that SIFT combined with the Reprojection Error
criterion performs best. We demonstrated our system on a
number of image sets and for several image sets we obtain
a transformation that differs from the ground-truth with a
reprojection error of less than 1 pixel, which would make the
found transformation suitable for application in virtual view
rendering. From the results it becomes clear that a larger
distance between the stereo cameras generally leads to less
consensus matches and to a larger error. Especially in the
matching between distant stereo cameras there is still room
for improvement.

6. FUTURE WORK
Finding corresponding points between stereo cameras is a

difficult task. One approach worth investigating is a multi-
pass approach, in which the transformation is first estimated
using the technique described in this paper, and then re-
estimated while discarding matches between stereo cameras
that are not reasonably consistent with the initial transfor-
mation found.

Another important step could be to investigate salient
point matching algorithms other than SIFT and SURF, specif-
ically algorithms more focused on matching between distant
views.
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